Beyond VaR: From Measuring
Risk to Managing Risk

Helmut Mausser and Dan Rosen

This paper examines tools for managing, as opposed to simply monitoring, a
portfolio’s Value-at-Risk (VaR). These tools include the calculation of VaR
contribution, marginal VaR and trade risk profiles. We first review the parametric,
or delta-normal, versions of these tools and then extend them to the simulation-
based, or non-parametric, case. We analyze two sample portfolios: one, consisting
of foreign exchange contracts, is well-suited for parametric analysis while the
other, which contains European options, is best addressed with simulation-based
methods. The limitations of the simulation-based approach, due to the potential
effects of sampling error, are also discussed.

Financial institutions worldwide have devoted
much effort to developing enterprise-wide
systems that integrate financial information
across their organizations to measure their
institution’s risk. Probabilistic measures, such as
Value-at-Risk (VaR), are now widely accepted by
both financial institutions and regulators for
assigning risk capital and monitoring risk. Since
development efforts have been driven largely by
regulatory and internal requirements to report
risk numbers, tools needed to understand and
manage risk across the enterprise have generally
lagged behind those designed to measure it.

Measuring risk is a passive activity; simply
knowing one’s VaR does not provide much
guidance for managing risk. In contrast, risk
management is a dynamic endeavor and it
requires tools that help identify and reduce the
sources of risk. These tools should lead to an
effective utilization of the wealth of financial
products available in the markets to obtain the
desired risk profiles.

To achieve this, a comprehensive risk manager’s
toolkit must provide the ability to
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* represent complex portfolios simply
* decompose risk by asset and/or risk factor

¢ understand how new trades affect the
portfolio risk

* understand the impact of instruments’ non-
linearities and of non-normal risk factor
distributions on portfolio risks

* understand complex, non-intuitive, market
views implicit in the portfolio as well as in
the investment policy or market liquidity

* generate potential hedges and optimize
portfolios.

Robert Litterman (1996a, 1996b, 1997a, 1997b)
recently described a comprehensive set of
analytical risk management tools extending some
of the insights originally developed by Markowitz
(1952) and Sharpe (1964). Developed in close
collaboration with the late Fisher Black and his
colleagues at Goldman Sachs, these tools are
based on a linear approximation of the portfolio
to measure its risk and assume a joint
(log)normal distribution of the underlying market
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risk factors, similar to the RiskMetrics VaR
methodology (J.R Morgan 1996). Litterman
further emphasized the dangers of managing risk
using only such linear approximations. However,
in spite of their onerous assumptions, the insights
provided by these tools are very powerful and
hence constitute a solid basis for a risk
management toolkit. (The reader is also referred
to the related papers by Mark Garman (1996,
1997) on marginal VaR and risk decomposition.)

This is the first of a series of papers in which we
present an extended simulation-based risk
management toolkit developed on top of the
analytical tools presented by Litterman.
Simulation-based tools provide additional
insights when the portfolio contains non-
linearities, when the market distributions are not
normal or when there are multiple horizons. In
particular, these tools should prove very useful
not only for market risk, but also for credit risk,
where the exposure and loss distributions are
generally skewed and far from normal. We further
demonstrate that simulation-based tools can be
used, sometimes even more efficiently, with other
risk measures in addition to VaR. Indeed, they
also uncover limitations of VaR as a coherent risk
measure, as has been demonstrated by

Artzner et al. (1998).

Simulation-based methods to measure VaR
(historical or Monte Carlo) are generally much
more computationally intensive than parametric
methods (such as the delta-normal method
popularized by RiskMetrics). Advances in
computational simulation methods and hardware
have rendered these methods practical for
enterprise-wide risk measurement. However, it is
widely believed that risk management tools based
on simulation are impractical since they require
substantial additional computational work
(Dowd 1998). We demonstrate that efficient
computational methods are available which
generally require little or no additional
simulation to obtain risk management analytics.

In this paper, we extend marginal VaR analysis to a
simulation-based environment, compare the
method with the parametric approach and apply
it to two practical examples. We demonstrate
how one can efficiently obtain the changes in the
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portfolio VaR, as measured by a simulation, that
result from adding a small amount (or
percentage) of an asset to the portfolio. We show
that, since VaR is a homogeneous function of the
positions, we can obtain an additive portfolio
decomposition based on marginal VaR, as in the
parametric case. We also investigate the trade
risk profiles of a single asset or a class of assets.
We discuss the properties of these tools, the
errors that arise due to sampling, their limitations
and possible extensions.

This paper is organized as follows. We first review
parametric VaR and use its associated risk
management tools to analyze a portfolio of
foreign exchange forwards. We then derive the
simulation-based tools and discuss the potential
effects of sampling error. To demonstrate the
methodology, we re-examine the foreign
exchange portfolio (obtaining results consistent
with the parametric version) and also consider a
portfolio of stock options for which the
parametric approach is inappropriate. We
conclude by suggesting directions for further
study.

Parametric VaR

The parametric, or delta-normal, method for
calculating VaR assumes the existence of a set of
market risk factors whose log price changes are
joint normally distributed with zero mean; that is,
if 1 is the log return on risk factor k, then

r ~ N(O, Q*), where Q* is the covariance matrix
of risk factor returns. Consider a portfolio
composed of positions x, where x; is the size of the
holding in instrument i, fori = 1, 2, ..., N. As

shown in the Appendix, the portfolio’s
100(1 — a)% VaR (which we denote VaR(x),

implicitly recognizing its dependence on Q) is
VaR(x) = m(x)'Qm(x) M)

2~ . .
where Q = Z_ Q' is a scaled covariance matrix

(Z4 denotes the standard normal z-value that
delimits a probability of O in the right tail) and
m(x), known as the VaR map of the portfolio, is
a vector of the portfolio’s exposure to the risk
factors. The elements of m(x) equal the
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monetary value of the portfolio’s position in each
risk factor. Thus, the VaR map provides a
reduced, or simplified, view of the portfolio from
a risk management perspective. Note that

N
m(x) = Z mlxi 2)
i=1

where vector m'is the VaR map of one unit of the
i-th instrument (i.e., mli is the exposure to risk

factor k that results from holding a single unit of
instrument i). Equation 2 shows that the
portfolio VaR map is the sum of the instruments’
VaR maps, weighted by position.

Trade risk profile and best hedge position

Knowledge of how VaR changes with position
size is critical for effective risk management. If we
plot the portfolio VaR against the size of the
position in a given instrument i (all other
positions being fixed), we obtain the trade risk
profile (TRP). As shown in Figure 1, the TRP

has a unique minimum, which occurs at the best

hedge position, x?h . The best hedge position can

be found analytically as described in the
Appendix.

Walue-al-Rick

Posilion size, &

Figure 1: Trade risk profile

Marginal VaR

Managing risk requires an understanding of how
new trades affect the portfolio risk. Thus, let us
now consider the calculation of the marginal
VaR, which measures the impacts of small
changes in risk factor exposures or instrument
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positions on the portfolio VaR. From Equation 1,
we find that the VaR gradient with respect to the
risk factor exposures is

O0,VaR(x) = \%"‘T((’;)) G)

The k-th element of [J,,VaR (x) is the change in

VaR that results from increasing the portfolio’s
exposure to the k-th risk factor (i.e., my(x)) by a

single monetary unit.

Since the VaR map of the portfolio is the sum of
the VaR maps for the positions (Equation 2), it
follows that the derivative of VaR with respect to
the i-th position is

T
PRED = (m'y (O, VaR () @
Equation 4 indicates the change in VaR due to
adding one unit of instrument i to the portfolio
(if x; < 0, then this corresponds to reducing the

short position). Note that this is simply the
derivative of the trade risk profile for instrument i
at the current position x;.

VaR contribution

By decomposing VaR, a risk manager is able to
target the most significant sources of risk, or the
portfolio’s so-called “Hot Spots”. This task is
complicated by the fact that VaR is a sub-
additive measure: the portfolio VaR is typically
less than the sum of the individual position VaRs.
However, since VaR is a homogeneous function
(i.e., VaR(ax) = a VaR(x) ), it admits a marginal
decomposition. Note that if we multiply
Equation 4 by the position and sum over all
holdings in the portfolio, we obtain

X

dVaR(x) _
i 5 = VaR(x) )

M =z

i=1 !

In Equation 5, each term in the summation is the
product of position size and the rate of change of
VaR with respect to that position. This essentially
represents the rate of change of VaR with respect
to a small percentage change in the size of the
position. Let us define

DECEMBER 1998



Beyond VaR

Instrument Currency Days to Strike Price Position Value
Maturity (USD) (x 10%) (x 10> USD)
CAD/USD .73 100d CAD 100 0.73 0.5 2.5
CAD/USD .74 30d CAD 30 0.74 1.0 -8.3
DEM/USD .57 60d DEM 60 0.57 6.0 73.2
DEM/USD .59 120d DEM 120 0.59 5.0 -28.2
FRF/USD .16 40d FRF 40 0.16 8.0 83.3
JPY/USD .0091 11d JPY 11 0.0091 10.0 -0.9

Table 1: FX portfolio

1 0VaR(x)
X x.
VaR(x) '  0x,

1

C(x) =

x 100% (6)

to be the percentage contribution to VaR of the
i-th position. Equation 6 must be interpreted on a
marginal basis; it indicates the relative
contributions to the change in VaR that results if
all positions are scaled by the same amount. Note
that at the best hedge position, a position’s
marginal VaR, and therefore also its VaR
contribution, is zero.

Similarly, multiplying both sides of Equation 3 by

m(x) T shows that VaR is equal to the inner
product of the VaR map and the VaR gradient
with respect to the risk factor exposures. We can
therefore define

AVaR (x)

= I X — 7 x 9
C(my(x)) = m my(x) o (x) 100%  (7)

to be the percentage contribution to VaR of the
k-th risk factor. Again, Equation 7 must be
interpreted on a marginal basis.

An example FX portfolio

Table 1 shows a portfolio of foreign exchange
(FX) forward contracts as of July 1, 1997.
Suppose that the exchange rates, in USD, are
0.73 (CAD), 0.58 (DEM), 0.17 (FRF) and
0.0090 (JPY). The total value of the portfolio is
122,000 USD and its one-day 99% VaR is
78,000 USD.

For this example, we elect to use the RiskMetrics
risk factor data set for computing the parametric
VaR. The portfolio’s VaR map, along with the
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marginal VaR and VaR contribution of each risk
factor, are shown in Table 2. The risk factors in
Table 2 are sorted in order of decreasing VaR
contribution. Since the forwards are contracts to
purchase foreign currency with USD, the VaR
map consists of long positions in FX spots and
foreign interest rates, and short positions in US
interest rates. The magnitudes of these positions
indicate that the portfolio has significant
exposure to the DEM/USD exchange rate and
30- and 90-day interest rates in the US and
Germany. Note that exposure to any risk factor
can be eliminated by undoing the corresponding
VaR map position (e.g., Canadian currency risk
can be removed by selling 1.09 million USD
worth of Canadian dollars).

The primary source of portfolio risk is currently
the DEM exposure, as indicated by the fact that
it contributes 83% of the VaR. Conversely, the
CAD exposure is actually acting as a hedge for
the portfolio, as evidenced by its negative VaR
contribution (-0.75%). Furthermore, the VaR
gradient indicates that, at the margin, the VaR
can be reduced by 5.41 USD for every additional
USD of exposure to the Canadian dollar. This
may be somewhat surprising given that the
portfolio is currently long CAD); it is a useful
illustration of the fact that portfolio risk depends
not only on the individual risk factors
themselves, but also on their correlation (in this
case, the Canadian dollar is negatively correlated
with the other currencies).

The previous analysis considers the effects of
general market factors on the VaR. The analysis
at the position level (Table 3) yields consistent
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Marginal VaR
Risk Factor V;i X; " 65;1 R((x) Contuion
5 k(%) Cmy(x))
(107USD) 1 10 UsD) (%)
DEM/USD exchange 6,327 102.67 82.99
FRF/USD exchange 1,355 95.62 16.55
JPY/USD exchange 90 97.51 1.12
US 90-day rate —4,146 -0.10 0.06
Germany 90-day rate 3,698 0.04 0.02
Germany 180-day rate 602 0.21 0.02
Canada 30-day rate 728 0.13 0.01
US 180-day rate 628 -0.08 0.01
US 30-day rate -5,631 0.01 0.00
Germany 30-day rate 3,517 -0.01 0.00
Canada 90-day rate 358 0.09 0.00
France 90-day rate 98 -0.21 0.00
Japan 30-day rate 33 0.01 0.00
Canada 180-day rate 20 -0.83 0.00
France 30-day rate 1,511 -0.03 -0.01
CAD/USD exchange 1,090 -5.41 -0.75

Table 2: Risk factor data for the FX portfolio (ranked by VaR contribution)

results. Together, the two DEM contracts
contribute approximately 83% of the current
portfolio risk while the CAD contracts, with a
total contribution of —0.70%, act as a hedge.
Note that these values agree well with the VaR
contributions of the DEM (83%) and CAD
(=0.75%) risk factor exposures. The marginal
VaRs indicate that increasing the positions in the
DEM, FRF and JPY contracts results in greater
portfolio risk while a similar increase in the CAD
contracts reduces risk. This is also reflected by
the best hedge positions; for the DEM, FRF and
JPY contracts, the best hedges are smaller than
the current positions (and in fact suggest shorting
contracts), but they are larger than the current
positions in the case of the CAD contracts.
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The impact of holding the best hedge position in
a given instrument can be measured in terms of
the percentage reduction in VaR that can be
achieved (i.e., the resulting decrease in VaR
expressed as a percentage of the current VaR). At
their best hedge positions, the DEM contracts
each reduce the VaR by almost 88% while each
CAD contract offers a much smaller reduction of
only 0.2%. In many cases, however, it may simply
not be feasible to hold an instrument at its best
hedge position. For example, being short seven
million units of DEM/USD .57 60d contracts
may well run counter to the underlying
objectives of the portfolio. Thus, it is often useful
to consult the trade risk profile (e.g., Figure 2) to
determine the VaR reduction that can be
achieved within practical limitations.
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Figure 2: Trade risk profile for
DEM/USD .57 60d

Simulation-based VaR

The simulation-based approach to VaR
calculation relies on a complete valuation of the
portfolio under a set of scenarios, which may
derive from historical data or a Monte Carlo
simulation. Given a particular “base case”
scenario (e.g., representative of current market
conditions), it is straightforward to calculate the
gain or loss in portfolio value in each scenario.
Let ¢ denote the unit value of instrument i in

the base scenario and q»itj denote its unit value in

scenario j at some future time t. We refer to ”itj as

a mark-to-future value for instrument i. Since

we assume exclusively a one-day time horizon for
calculating VaR, we will hereafter dispense with
the t superscript to improve readability. Let us

define Av; = o/

— v to be the unit loss of
instrument i in scenario j. If the current position
in instrument i is x;, then the loss (note that a
gain is a negative loss) incurred by the portfolio

in scenarioj is

N
L]-(x) = z x; Dy, (8)
i=1

Suppose that the likelihood, or weight, of
scenario j is p;. If we order the losses from largest
to smallest (since losses can be negative when the
portfolio gains in value, “smallest” is taken here
to mean “most negative”) and calculate the
cumulative scenario probability, then the non-
parametric 100(1 — a)% VaR, or nVaR, equals
the loss in that scenario for which the cumulative
probability first meets or exceeds . We refer to
this scenario as the threshold scenario. To
simplify the notation, we denote the threshold
scenario simply as s°, implicitly recognizing its
dependence on x and a.

For example, consider a portfolio that is
evaluated over a set of 100 scenarios. Table 4
shows the five largest losses, in decreasing order
of magnitude, along with their respective

Marginal VaR Current Best He dee
o Position VaR
0VaR(x) Contribution Position bh a
Instrument “ox X o Reduction
l ' (%)
-4 10°
(x 10 USD) (x 107 (x 109)
DEM/USD .57 60d 59.24 454 6.0 -7.0 87.7
DEM/USD .59 120d 58.97 317 5.0 -8.0 817.6
FRF/USD .16 40d 16.19 16.5 8.0 -38.3 79.2
JPY/USD .0091 11d 0.88 1.1 10.0 -209.2 13.2
CAD/USD .73 100d -3.80 -0.2 0.5 1.4 0.2
CAD/USD .74 30d -3.85 -05 1.0 1.9 0.2

Table 3: Instrument data for the FX portfolio (ranked by VaR contribution)
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Scenario Loss
Number
27 10,000
82 9,500
50 8,800
11 8,600
63 8,100

Probability ?’?;T;};E:;
0.010 0.010
0.030 0.040
0.010 0.050
0.020 0.070
0.005 0.075

Table 4: Simulation-based VaR example

scenarios, probabilities and cumulative
probabilities. For this particular portfolio and
scenario set, the 95% and 98% nVaRs are 8,800
and 9,500, respectively. Note that in the latter
case, py7 + pgy = 0.04 > 0.02 and so one might
argue that some value between 10,000 and 9,500
provides a better estimate for the 98% nVaR. A
discussion of the merits of such interpolation
schemes is beyond the scope of this paper; we
simply note that the above approach may yield a
smaller nVaR, relative to interpolated values, in
some cases.

While valuing the portfolio under large numbers
of scenarios can be a computationally intensive
task, nVaR analysis has the desirable property of
requiring only a single simulation. Once the
instruments’ mark-to-future values have been
obtained, Equation 8 can be used to calculate
losses for individual holdings (and hence the
portfolio) under subsequent changes in the
positions.

Trade risk profile and best hedge position

Recall that the trade risk profile plots the level of
risk (VaR or nVaR) against the position taken in
a particular instrument. In the parametric case,
the resulting curve is smooth and has a unique
minimum at the best hedge position. The nVaR’s
dependency on a finite number of scenarios
implies that the non-parametric trade risk profile
(nTRP) is piecewise linear (Figure 3). As shown
in the Appendix, the n'TRP consists of multiple
segments, each corresponding to a threshold
scenario that is in effect for a given range of
positions. Unlike the parametric case, the nTRP
may have multiple local minima, and therefore,
finding the best hedge position (i.e., the global
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minimum), x?bh
computational effort. However, this effort lies
only in tracing out the nTRE, rather than re-
pricing the instruments, and so computational
time is typically far less than that required for a

full simulation.

, may require considerable

Value-at-Risk

Position, x;

Figure 3: Simulation-based trade risk profile

Marginal nVaR

One might anticipate that calculating the
marginal nVaR involves making a small
positional change, re-simulating the portfolio
and recalculating nVaR. Fortunately, this is not
required. From the definition of nVaR as the loss
in the threshold scenario

N
nVaR(x) = Z x; M, ©)
i=1 )

it follows that nVaR is linear in x. Let us assume
for the moment that the threshold scenario
remains unchanged for small variations in the
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positions. In this case, the derivative of nVaR
with respect to the i-th position is

dnVaR(x) _ Av
Ox,

1

(10)

is

Thus, the i-th component of the nVaR gradient is
simply the difference between the instrument’s
values in the base and threshold scenarios.

Let us now examine the marginal nVaR in light
of the piecewise linearity of the n'TRP. In doing
so, we will make reference to Figure 4, which

illustrates two adjacent segments of a n'TRP for
some instrument i. In this case, positions (x;) of

100, 200 and 300 result in portfolio nVaR values
of 25,000, 10,000 and 15,000, respectively. The
slope of the first segment is —150 while that of the
second segment is 50. Recall that positions in all
instruments other than i are held fixed.

Since the nTRP is piecewise linear, all positions
in instrument i that lie on the same segment have
an identical gradient, whose i-th component is
simply the slope of that segment; that is, for all
100 < x; < 200, increasing (decreasing) the
position in instrument i by a sufficiently small
amount O decreases (increases) the portfolio
nVaR by 1509. In this case, a “sufficiently small”
change in position can be calculated precisely as
a decrease of up to x; — 100 or an increase of up to

200 - x;.

Now consider a position of 200 in instrument i,
which corresponds to a change in the threshold
scenario. As is evident in Figure 4, the gradient is
not well-defined at this point; its i-th component
changes abruptly from —150 to 50. To deal with
this lack of continuity in the gradient at such
points, it is necessary to consider two one-sided
sub-gradients. It should be apparent, however,
that knowledge of the slopes and endpoints of
the segments comprising the nTRP allows
marginal nVaR information, and the range for
which it is valid, to be reported for any position.
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Figure 4: Two segments of a nTRP

nVaR contribution

Equation 9 immediately provides us with a risk
decomposition — nVaR is the sum of the position
losses in the threshold scenario. Thus, the
percentage contribution to nVaR of the i-th
position is simply

nC(x,) = » X 100% (11)

1
WVaRG) < A
Note that Equation 11 is identical to Equation 6
in that the risk contribution is based on the
product of the position and the marginal nVaR.
Thus, as in the parametric case, the above
decomposition must be interpreted on a marginal
basis. If we scale all positions by some factor
(1 + €), where € is a small constant, then nVaR
increases by an amount € X nVaR (x) and
Equation 11 indicates the relative contribution of
the i-th instrument to this increase.

Implementation considerations

The simulation-based approach to VaR, as
described in this paper, depends entirely on the
scenarios used in the simulation; changing the
scenarios is likely to yield different values for
nVaR as well as for the related marginal risk
measures. Thus, it is important to recognize the
possible effects of sampling error on the reported
values. In particular, while increasing the number
of scenarios generally improves the reliability of
nVaR as an estimate of the true Value-at-Risk,
the marginal nVaR (and similarly, the nVaR
contribution) may still exhibit considerable
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Scenario #1 Scenario #2
Instrument Position mark-to-future | mark-to-future
values values
1 100 10 5
2 50 10 20
Portfolio 1,500 1,500

Beyond VaR

Table 5: Sample two-instrument portfolio

variability as more scenarios are sampled. To
improve the accuracy of these values, we propose
using a smooth approximation to the nTRP

The problem: sensitivity to the threshold scenario

Recall from Equation 10 that the marginal nVaR
is determined exclusively by an instrument’s
values in the base and threshold scenarios.
Obtaining consistent marginal nVaR estimates,
then, requires that scenarios resulting in similar
losses also have similar mark-to-future values for
the instruments. However, this may not hold in
practice, as illustrated by the following example.
Consider a portfolio consisting of only two
positions that is simulated over two scenarios
(Table 5). The portfolio has an identical value
(and therefore an identical loss) in both
scenarios, yet the instruments’ mark-to-future
values (and the marginal nVaRs) are quite
different. Therefore, the marginal nVaR is
extremely sensitive to the threshold scenario.

Since an instrument’s marginal nVaR equals the
slope of the n'TRP for that instrument at the
current position, it follows that adjacent
segments of the nTRP can have markedly
different slopes (recall from Figure 4 that
adjacent segments of the n'TRP meet at points
where the respective threshold scenarios incur
the same loss). Increasing the number of
scenarios tends to shorten the average length of
segments comprising the n'TRP. However,
adjacent segments do not necessarily become
better “aligned” in the sense of having similar
slopes. Thus, the marginal nVaR may not exhibit
the convergence that might be expected as more
scenarios are sampled.
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The solution: smoothing the nTRP

Fitting a smooth curve to the nTRE and then
taking the derivative of this curve, tends to
provide a more robust estimate of the true
marginal VaR. Essentially, this approach removes
the “noise” that is present in the nTRP

One might consider using splines or fitting a
polynomial function, P;(x;), to the nTRP of

instrument ¢ (specifically, to the endpoints of the
segments) in the least squares sense. Clearly, the
degree of P;(x;) should be chosen so that the

curve provides a reasonable approximation to the
nTRE, without over-fitting the points. A visual
comparison of the two curves will generally
establish the suitability of P;(x;) for the range of

positions being considered. From this
approximation, one can then obtain the
following estimates:

* marginal nVaR at position x;

0 nVaR(x)
0Ox,

13

=P/(x;)
*  best hedge position

nbh 0O «

X; %{xi Pi(xi*) < P,(x;) for all x; in the range of interest [D

* nVaR contribution at position x

x; P (x;)

nC(x;) = — x 100% (12)
N
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The FX portfolio revisited

To compare the parametric and simulation-based
VaR analyses, the FX portfolio was simulated
over a set of 1,000 Monte Carlo scenarios. The
one-day 99% nVaR is 77,000 USD, which differs
from the parametric value by less than 2%. The
resulting loss histogram is approximated well by a
normal distribution (Figure 5) and the nVaR
analysis (Table 6) is consistent with its
parametric counterpart in Table 3. The final
column of Table 6 gives the range for which the
marginal nVaR remains unchanged (i.e., the
“length” of the current segment of the n'TRP for
each instrument). Note the close agreement
between the parametric and simulation-based
trade risk profiles for DEM/USD .57 60d

(Figure 6).
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Figure 5: Distribution of losses for the FX
portfolio with best normal approximation

(1,000 scenarios)
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Figure 6: TRP and nTRP for DEM/USD .57 60d
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Example - the NIKKEI portfolio

Table 7 shows a portfolio that implements a
butterfly spread on the NIKKEI index, as of

July 1, 1997. In addition to common shares of
Komatsu (current price 840,000 JPY) and
Mitsubishi (current price 860,000 JPY), the
portfolio includes several European call and put
options on these equities. The total value of the
portfolio is 12,493 million JPY and its parametric
one-day 99% VaR is 115 million JPY.

This portfolio, which may be representative of
the positions held by a trading desk, makes
extensive use of options to achieve the desired
payoff profile. A histogram showing the
distribution of losses over a set of 1,000 Monte
Carlo scenarios (Figure 7) indicates that the
normal distribution fits the data poorly, and that
the parametric VaR is likely to over-estimate the
true Value-at-Risk. Indeed, simulating the
portfolio over these 1,000 scenarios results in a
one-day 99% nVaR of 2.9 million JPY, reflecting
the fact that the portfolio is well-hedged. Because
the parametric VaR measures the risk poorly in
this case, we perform only a simulation-based
analysis.

0.25 -
Q.20 =
015 =

010 -

Prodability

0.05

0.0 | ull”"” k

-184 -157 -121 - -4 -11 25 @82
Size of Loss {milions JFY)

iF

Figure 7: Distribution of losses for the NIKKEI
portfolio with best normal approximation

(1,000 scenarios)

We compute the contributions, marginal nVaRs
and best hedge positions using a pure non-

parametric approach (i.e., corresponding to the
piecewise-linear nTRP), as well as a third-order
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. Best
Marginal
nVaR nVaR Current He'd.ge Valid Range
Contribution | Position Position nVaR for Marginal
Instrument 0 nVaR(x) _ bh Reduction
ox, nClx) X; M (%) nVaR
4 (%) (x 109) : ’ (x 109)
(x 10 USD) < 109
DEM/USD .57 60d 59.73 46.6 6.0 1.4 87.0 [2.7,9.2]
DEM/USD .59 120d 59.62 38.7 5.0 -8.2 86.9 [1.7,8.2]
FRF/USD .16 40d 15.03 15.6 8.0 -38.0 78.6 [3.4,20.8]
JPY/USD .0091 11d 1.01 1.3 10.0 -258.6 18.8 [-3.1, 111.1]
CAD/USD .73 100d -11.86 -0.8 0.5 1.0 0.8 [-2.5, 1.0]
CAD/USD .74 30d -11.01 -14 1.0 1.6 0.8 [-2.3, 1.6]
Table 6: nVaR analysis for the FX portfolio (1,000 scenarios)
polynomial approximation to the nTRP This each other to a large extent. In particular,
analysis is summarized in Table 8. The results of considering the relative sizes of the positions in
the polynomial approximation appear in the portfolio, note that the Komatsu Cjun2 670
parentheses. position stands to gain considerably if the market

appreciates while the Mitsubishi Psep30 800

The magnitudes of the nVaR contributions are o ' ‘
position acts in the opposite manner. More

quite large, ranging from —2387% (Mitsubishi

Psep30 800) to 2151% (Komatsu Cjun2 670). generally, as indicated by their negative
This is due to the fact that the portfolio is highly-  contributions, the two short calls and the two
leveraged and well-hedged, so that the risks long puts act as a hedge for the portfolio,
incurred by individual positions tend to offset protecting against drops in the NIKKEI index.
Instrument Type Days 1.;0 Strike Price Position Value
Maturity x10°JPY) | (x10%) (x 10 JPY)
Komatsu Equity n/a n/a 25 2,100,000
Mitsubishi Equity n/a n/a 2.0 1,720,000
Komatsu Cjul29 900 Call 7 900 -28.0 -11,593
Mitsubishi Cjul29 800 Call 7 800 -16.0 -967,280
Mitsubishi Csep30 836 Call 70 836 8.0 382,070
Mitsubishi EC 6mo 860 Call 184 860 11.5 563,340
Komatsu Cjun2 760 Call 316 760 7.5 1,020,110
Komatsu Cjun2 670 Call 316 670 22.5 5,150,461
Komatsu Paug31 760 Put 40 760 -10.0 -68,919
Komatsu Paug31 830 Put 40 830 10.0 187,167
Mitsubishi Psep30 800 Put 70 800 40.0 2,418,012

Table 7: NIKKEI portfolio
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. Best Hedge
nVaR Marginal nVaR | Current Position
Contribution 9 nVaR(x) Position bh nVaR
Instrument B w— _ n Reduction
nC(x;) Ox, X; X; (%)
(%) PY 10° 0
UPY) (107 (x 10%)
Komatsu Cjun2 670 2151 2727 22.5 20.1 41.3
(1094) (1028) (20.0) (43.0)
Komatsu Cjun2 760 678 2576 7.5 5.0 42.2
(344) (970) 4.8) (44.2)
Mitsubishi Csep30 836 477 1699 8.0 3.9 34.8
(247) (653) (4.6) (35.3)
Mitsubishi EC 6mo 860 232 575 11.5 9.1 229
(179) (329) (7.8) (23.0)
Komatsu 202 2300 2.5 -0.4 35.1
(101) (857) 0.1 (35.0)
Mitsubishi 149 2119 2.0 -1.2 35.1
(75) (790) (-0.8) (35.0)
Komatsu Paug31 760 53 -152 -10.0 332 35.2
(28) (-60) (28.7) (35.7)
Komatsu Cjul29 900 51 52 -28.0 -150.5 347
(-26) (20) (-121.0) (35.2)
Komatsu Paug31 830 -237 -675 10.0 19.8 34.6
(-119) (-252) (19.0) (35.4)
Mitsubishi Cjul29 800 -1166 2078 -16.0 -19.3 34.8
(-591) (781) (-18.8) (35.0)
Mitsubishi Psep30 800 -2387 -1702 40.0 44.2 347
(-1232) (-651) 43.5) (35.4)
Table 8: Analysis of the NIKKEI portfolio based on 1,000 scenarios
(results of polynomial approximation in parentheses)
The contributions (and the marginal nVaRs) include any one of the following trades: reducing
calculated using the polynomial approximation the current holdings in Komatsu Cjun2 670 or
to the nTRP are roughly half the size of those Komatsu Cjun2 760, selling one of the common
obtained by the pure non-parametric approach. stocks, or shorting additional calls on Mitsubishi

(i.e., Mitsubishi Cjul29 800). Purchasing
additional units of Mitsubishi Psep30 800 is also a

promising option.

As will be discussed shortly, this is due to the
smoothing effects of the approximation. Note,
however, that the relative sizes of the

contributions among all instruments are the same . : . .
g If it is feasible to hold an instrument at its best

hedge position, then Komatsu Cjun2 760 offers
the greatest potential for reducing risk (i.e., a
reduction of 42.2%). Note the close agreement
between the best hedge positions as determined
Based on the marginal nVaR, the most attractive by the nTRP and by the polynomial
possibilities for lowering the overall portfolio risk approximation.

in both cases (i.e., they yield an identical ranking
of the instruments in terms of the nVaR
contribution).
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Smoothing and the polynomial approximation

Figure 8 shows the n'TRP and its polynomial
approximation for one of the Mitsubishi call
options. At the current position (11,500), the
nTRP is more steeply sloped than the
polynomial, which results in a larger marginal
nVaR (i.e., 575 versus 329). Note that smoothing
counteracts discrepancies caused by the
piecewise linearity of the n'TRP. This is
particularly evident at a position of 7,000; here,
the nTRP slopes upwards, implying a positive
marginal nVaR, while the negative marginal
nVaR derived from the approximation is more
consistent with the general shape of the trade
risk profile.
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Figure 8: nTRP and polynomial approximation
for Mitsubishi EC 6mo 860

To illustrate the effects of increasing the number
of scenarios on the nTRE, the NIKKEI portfolio
was also simulated over 2,000 and 5,000
scenarios. These scenario sets are obtained by
first adding 1,000, and then a further 3,000
scenarios to the initial scenario set. Figure 9 plots
the 5,000-scenario nTRP along with each of the
polynomial approximations. The curves tend to
shift downwards, suggesting a smaller nVaR, as
the number of scenarios is increased. However,
we note that they remain within the 95%
confidence interval for nVaR, calculated for the
1,000-scenario simulation, at the current
(11,500) and best hedge positions (9,100). While
increasing the number of scenarios creates more
segments in the nTRP (compare Figures 8

and 9), sampling error remains a concern even at
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the 5,000-scenario level (i.e., one can find
segments on the nTRP whose slopes are
inconsistent with those of the polynomial
approximation). In contrast, the approximations
tend to provide more consistent gradient
information.

It should be noted, however, that even when
using the polynomial approximation, we observe
inconsistencies in the nVaR contributions (i.e., a
position that contributes positively to VaR in one
analysis is found to have a negative contribution
in another). Since the portfolio nVaR is
extremely small relative to the individual
position nVaRs in this case, slight errors in the
polynomial approximations may combine to
change the sign of the denominator in

Equation 12. This should only be viewed as a
concern for well-hedged, highly-leveraged
portfolios, such as the one considered in this
example, rather than for portfolios containing
options in general.
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Figure 9: n'TRP and polynomial approximations

for Mitsubishi EC 6mo 860
Conclusions

This paper has examined tools for VaR-based risk
management. Tools for decomposing VaR,
assessing its marginal impacts and constructing
best hedges, allow managers to understand the
sources of risk better and to manipulate the
portfolio to effect the desired changes in risk.
The analytical techniques that derive from the
parametric, or delta-normal, VaR form the basis
of a risk manager’s toolkit when dealing with
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portfolios of linear instruments. The simulation-
based tools developed in this paper extend these
capabilities to portfolios that contain non-
linearities or are subject to non-normal market
distributions. An attractive feature of these
methods is their need for only a single simulation
to obtain the mark-to-future values of the
instruments. Furthermore, it is straightforward to
incorporate new instruments into the analysis by
simulating them independently of the portfolio
itself. Thus, while our analyses considered
trading only those instruments currently held in
the portfolio, it extends naturally to encompass
so-called incremental VaR. Specifically, it is only
necessary to simulate the additional instruments
to be considered. Once their mark-to-future
values have been obtained, the instruments can
be easily incorporated in any marginal nVaR
analysis by assigning them a current position of
zero.

We note that sampling errors can occasionally
yield inconsistent results under the simulation-
based approach to VaR. Hence, we propose
fitting a smooth curve to the (piecewise-linear)
trade risk profile to obtain more robust estimates
of the VaR contribution, marginal VaR and best
hedge positions. The techniques are
demonstrated on a portfolio of European options
that is poorly-suited for parametric analysis. The
results show that a smooth approximation to the
nTRP improves the reliability of marginal VaR
estimates, although caution is required when
interpreting VaR contributions for well-hedged,
highly-leveraged portfolios.

The accuracy of the simulation-based analysis, in
light of potential sampling error, is a subject
worthy of further investigation. The polynomial
approximation to the n'TRP is a fairly simple one;
the use of splines or other functions may be a
preferable approach. In this paper, we have only
considered smoothing the trade risk profiles. A
more ambitious strategy might seek to fit a
probability distribution to the losses themselves
and then estimate VaR based on this distribution.
This would in fact eliminate the piecewise
linearity of the nTRP that is characteristic of the
current approach. Furthermore, we anticipate
that alternative risk measures, such as expected
shortfall, or regret, will exhibit more robust

ALGO RESEARCH QUARTERLY

behaviour than nVaR, which relies exclusively on
the threshold scenario.
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Appendix

Calculating parametric VaR

Consider a portfolio with N holdings that is
exposed to W market risk factors. Each
instrument in the portfolio is decomposed into a
set of risk factor positions so that the change in
the instrument’s value, Av;, can be expressed

linearly in terms of the risk factor returns:
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w )
Do, = z mLTk (A1)
k=1

Recall that the vector m' is the VaR map of
instrument i. We can express the change in the
value of the portfolio as the sum of the changes
in the values of its holdings:

N W
AV(x) = Z X; Z mzrk

i=1 k=1

From the definition of the portfolio VaR map
(Equation 2), we can write Equation A1 more
compactly as

AV(x) = m(x)TT

Note that AV (x) is normally distributed with

mean zero and variance m(x)TQ*m(x), so that

the 100(1 - a)% VaR is
VaR(x) = Zgam(x) Q m(x)

Defining Q = 2 Q" (e.g, Zg5 = 1.645) yields
Equation 1.

Parametric trade risk profile

To construct the trade risk profile for instrument
i, fix the positions in all instruments other than i
to their current values and consolidate them into
a base portfolio position x;. Denote the single-
unit volatilities of instrument i and the base
portfolio by 0; and 0y, respectively, and their

correlation by p;;. The volatility of the portfolio is

o(x) = J(xici)z + (xlol)z +2p,(x,0,)(x,0)
Since

VaR(x) = Z,0(x)
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it follows that the trade risk profile is a curve of
the form

flx,) = /axi2 +bx;+c (A2)

2
where a = (Z40)*, b = 22 py0;0pq and
¢ = (Z,0p)?. Differentiating Equation A2 with
respect to x; yields

df(x)  Zax;+b

dx; - flx)

Since f(x;) is strictly positive, the unique
minimum occurs at the best hedge position
*_ Pi9x
X, = — =

b
i 2a o

It is straightforward to show that f(x;) is

symmetric around this point.
Simulation-based trade risk profile

To construct the nTRP for instrument i, let us fix
the positions in all instruments other thani to
their current values. The loss incurred by the
portfolio in scenario j (see Equation 8) can be
written

Lj(xi) = AVU +x; A‘“zj

where AVj;includes the losses due to all
instruments other than i. If we plot portfolio
losses against the position in instrument i, then
each scenario j gives rise to a line Li(x;) with slope
Avj; and x-intercept —AV;; / Av;. The piecewise
linearity of the nTRP follows from the fact that it
is composed of segments from these lines.
Specifically, the nTRP consists of the segments
defined by the threshold scenario at each
position. This is illustrated in Figure A1, which
shows a n'TRP in which the threshold scenario is
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always the one with the third-largest loss. Note
that each nTRP segment lies on the third line
from the top.

Loas

Pnﬂﬁuﬁn
Figure Al: Example of a n'TRP (in bold)

In general, the threshold scenario can change
whenever the line Lo (x;) intersects that of
another scenario. An algorithm that constructs
the trade risk profile and finds the best hedge
position is described in Mausser and Rosen

(1998).
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