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We present a simulation-based model to estimate the credit loss distribution of retail loan 
portfolios and apply the model to a sample credit card portfolio of a North American 
financial institution. Within the portfolio model, we test three default models that 
describe the joint behavior of default events. The first model is purely descriptive in 
nature while the other two models are causal models of portfolio credit risk, where the 
influence of the economic cycle is captured through the correlations of default rates to 
various macroeconomic factors. The results obtained using all three default models are 
very similar when they are calibrated to the same historical data. In addition to measuring 
expected and unexpected losses, we demonstrate how the model also allows risk to be 
decomposed into its various sources, provides an understanding of concentrations and 
can be used to test how various economic factors affect portfolio risk.
In recent years, several methodologies for 
measuring portfolio credit risk have been 
introduced that demonstrate the benefits of using 
internal models to measure credit risk in the 
banking book. These models measure economic 
credit capital and are specifically designed to 
capture portfolio effects and account for obligor 
default correlations. 

Several portfolio credit risk models developed in 
the industry have been made public; e.g., 
CreditMetrics (Gupton et al. 1997), CreditRisk+ 

(Credit Suisse Financial Products 1997) and 
Credit Portfolio View (Wilson 1997a and 1997b). 
Others remain proprietary, such as KMV’s 
Portfolio Manager (Kealhofer 1996). Although 
the models appear quite different on the surface, 
recent theoretical work has shown an underlying 
mathematical equivalence among them 
(Gordy 2000; Koyluoglu and Hickman 1998). 
However, the models differ in their distributional 
assumptions, restrictions, calibration and 
solution. Also, empirical work shows that all 
models yield similar results if the input data is 

consistent (Crouhy and Mark 1998; 
Gordy 2000).

A limitation these credit risk models share is the 
assumption that, during the period of analysis, 
market risk factors, such as interest rates, are 
constant. While this assumption is not a major 
obstacle when measuring credit risk for portfolios 
of loans or floating rate instruments, it is not 
acceptable when a portfolio contains derivatives 
or instruments with embedded optionality. An 
example of an integrated market and credit risk 
model that overcomes this limitation is given in 
Iscoe et al. (1999). The authors extend the 
framework outlined by Gordy (2000) and 
Koyluoglu and Hickman (1998) by generating 
scenarios that include explicit market risk factors 
and credit drivers and allowing for stochastic 
exposures in each scenario.

The general principles of portfolio credit risk 
models are equally applicable for both the 
commercial and the retail markets. However, 
most of the applications of these models in the 
literature have focussed on portfolios of bonds or 
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corporate loans (e.g., Carey 1998; Crouhy and 
Mark 1998; Bucay and Rosen 1999; 
Wilson 1997). The measurement of portfolio 
credit risk in retail loan portfolios has not 
received as much attention. 

In this paper, we develop a methodology to 
measure the credit risk of a retail portfolio. The 
method is based on the general portfolio credit 
risk framework described in Iscoe et al. (1999). 
We discuss the practical estimation and 
implementation of the model and demonstrate its 
applicability with a case study based on the credit 
card portfolio of a North American financial 
institution. Finally, we analyze the sensitivity of 
the results to various assumptions.

An important part of the framework is the model 
that describes the joint behaviour of default 
events. We present and test three models to 
describe this joint default behaviour and calibrate 
them using the same historical data. The first 
model is a sector-based model, which is purely 
descriptive in nature and makes no attempt to 
explain economic causality of credit distress. The 
other two models are factor-based models of 
portfolio credit risk. Factor-based models are 
causal models, in which the influence of the 
economic cycle is captured through the 
correlations of default rates to various 
macroeconomic factors. Both causal models use a 
multi-factor model that captures the systemic 
component of credit risk due to a set of 
macroeconomic factors. Therefore, the factor-
based models are useful for further stress testing 
and estimating conditional losses using economic 
scenarios. These two models differ in the 
mathematical function they use to relate the 
factors to the default probabilities.

The rest of the paper is organized as follows. The 
next section briefly reviews the general 
quantitative framework for portfolio credit risk 
models. Thereafter, the credit risk models used in 
the case study are described, as well as the 
methodology for their estimation. Then the case 
study is presented in the following manner: first, 
the portfolio and the data are described together 
with the assumptions made to measure the 
different inputs of the model; second, the 
estimation of the different parameters of the 

model are discussed; third, the results are 
presented and the models are compared; fourth, 
several stress tests are presented. Finally, some 
concluding remarks and directions for future 
research are discussed.

Portfolio credit risk modelling framework

Portfolio credit risk models can be understood 
within a general underlying framework (see 
Gordy (2000); Koyluoglu and Hickman (1998); 
Iscoe et al. (1999)). In this section, we introduce 
the basic components of the framework. 
Subsequently, we present a model to assess the 
credit risk of a credit card portfolio. 

We focus on default-mode portfolio credit risk 
models, i.e., on models that measure exclusively 
the losses due to default events. The framework 
also applies, more generally, to mark-to-market 
models, where losses due to credit migration are 
also considered. 

Portfolio credit risk models consist of five parts:

Part 1: Description of the scenarios or states of 
the world. This is a model of the evolution of the 
relevant “systemic” or sector-specific credit 
drivers that drive credit events, as well as those 
market factors driving obligor exposures, over the 
period of analysis.

Part 2: Correlated default model. Default 
probabilities vary as a result of changing 
economic conditions. At each point in time, an 
obligor’s default probabilities are conditioned on 
the state of the world. Default correlations 
among obligors are determined by how changes 
in credit drivers affect conditional default 
probabilities. 

Part 3: Obligor exposures, recoveries and 
losses in a scenario. The credit exposure to an 
obligor is the amount the institution stands to 
lose should the obligor default. Recovery rates 
are generally expressed as the percentage of the 
exposure that is recovered through such 
processes as bankruptcy proceedings, the sale of 
assets or direct sale to default markets. Exposures 
can be assumed to be constant in all scenarios for 
banking instruments without optionality as well 
as bonds, but not for derivatives or banking book 
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products with credit-related optionality such as 
prepayment options.

Part 4: Conditional portfolio loss distribution 
in a scenario. Conditional on a scenario, obligor 
defaults are independent. Based on this property, 
we can apply various techniques to obtain the 
conditional portfolio loss distribution (see, for 
example, Credit Suisse (1997); Finger (1999); 
Nagpal and Bahar (1999)).

Part 5: Aggregation of losses in all scenarios. 
The unconditional distribution of portfolio credit 
losses is obtained by averaging the conditional 
loss distributions over all scenarios.

Single-step portfolio credit risk model for a 
retail portfolio

We present a single-step, default-mode portfolio 
credit risk model. The model estimates the 
distribution of potential losses due to obligor 
defaults occurring during a single horizon. We 
assume that exposures and recovery rates at the 
end of the horizon are deterministic and do not 
vary with the state of the economy. This is a 
simplifying assumption that could be relaxed in 
future work.

Consider the single period [t0, t]; specifically, 
assume t = 1 year. The portfolio contains N 
obligors or accounts; each obligor belongs to one 
of NS < N sectors. A sector is a group of obligors 
of similar characteristics and credit quality. Thus, 
it is assumed that obligors in a sector are 
statistically identical; i.e., they have the same 
probability of default, recovery and exposure in 
each scenario.

Three variants of the model are presented: a 
sector-based logit model, a factor-based logit 
model and a factor-based Merton model. 

The scenarios in factor-based models are 
described by both systemic and sector-specific 
factors, while the scenarios in sector-based 
models are described by only sector-specific 
factors. Sector-based models are purely 
descriptive and make no attempt to explain the 
economic causality of credit distress. On the 
other hand, factor-based models are causal 
models of portfolio credit risk. In factor-based 

models, the influence of the economic cycle is 
captured through the use of multi-factor models, 
which capture the correlations of defaults to 
various systemic factors. Hence, factor-based 
credit risk models are useful for further stress 
testing and estimating portfolio losses conditional 
on economic forecast scenarios. 

The factor-based logit model and Merton model 
differ in the mathematical function used to 
describe conditional default probabilities for each 
sector. While the logit model uses a functional 
form purely for mathematical convenience, the 
Merton model uses a functional relationship 
derived from financial principles and a 
microeconomic view of credit.

In the following sections, the specific parts of the 
models are described.

1. Scenarios or states of the world

A scenario or state of the world at t is defined by 
the outcome of q systemic and sector-specific 
factors that influence the creditworthiness of the 
obligors in the portfolio. We refer to these factors 
as the credit drivers. Of the q credit drivers, 
there are qM systemic drivers that represent 
macroeconomic, country and industry factors; 
the remainder qS = q – qM drivers are sector-
specific factors. 

Denote by x the vector of factor returns at time t; 
i.e., x has components xk = ln{rk(t)/rk(t0)}, where 
rk(t) is the value of the k-th factor at time t. At 
the horizon, assume that the returns are normally 
distributed: x ~ N(µ, Q), where µ is a vector of 
mean returns, and Q is a covariance matrix. 
Denote by Z the vector of standardized factor 
returns with entries Z = (xk – µk) / σk. To 
distinguish between systemic macroeconomic 
factors and sector-specific factors, we write the 
standardized factor returns as the row vector 

, where  

represents the macroeconomic factors and 

 the sector-specific factors.

Factor-based models attempt to explain partially 
the economic causality of credit losses. 
Therefore, scenarios include the realization of 

Z ZM ZS
,( )= ZM Z1

M
… Z

qM
M

, ,( )=

ZS Z1
S … Z

qS
S, ,( )=
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both the macroeconomic and sector-specific 
factors; i.e., they are defined on the whole vector 
Z. In this case, it is common to assume also that 
the sector-specific factor returns are 
uncorrelated. 

The sector-based model, on the other hand, is 
descriptive only and assumes that the states of 
the world are described by levels of sector-
specific factors. Therefore, scenarios are 
represented only by realizations of the vector of 

sector-specific drivers, . In this case, these 
factors are assumed to be correlated.

For mathematical convenience, it is common 
practice before the analysis to transform the 
factor returns to a vector of independent factors. 
This can be achieved, for example, by applying 
principal component analysis (PCA) to the 
original macroeconomic factor returns and the 
sector-specific factors as required. Hence, for 
ease of exposition, and without loss of generality, 
we assume that the standardized factor returns, 
Z, are independent. 

2. Joint default model

For each obligor, the joint default model consists of 
three components. The first is the definition of the 
unconditional probability of default. The second is 
the definition of a creditworthiness index and the 
estimation of the multi-factor model that links the 
index to the credit drivers. The third component is 
a model of obligor default that links the 
creditworthiness index to the default probability; 
the default model is used to obtain conditional 
default probabilities in each scenario. Each of 
these components is explained below.

Denote by τ the time of default of an obligor in 
sector j, and by pj its unconditional probability 
of default by time t:

It is assumed that unconditional probabilities for 
each sector are known. The method used to 
obtain these probabilities from historical default 
experience is described in Appendix 1.

The second component of the joint default 
model is the creditworthiness index. Consider a 

given obligor l in sector j. The obligor 
creditworthiness index, denoted by Yl, is a 
continuous variable that determines an obligor’s 
creditworthiness or financial health. The 
likelihood of the obligor being in default at time t 
can be determined directly by the value of its 
index. In general, Yl is a standard normal variable 
(i.e., with zero mean and unit variance).

The creditworthiness index, Yl, is related to the 
scenario, Z, through a linear multi-factor model:

 (1)

where

 is the sensitivity of the index l to factor k and 
the  for each obligor index are independent and 
identically distributed standard normal variables 
(independent of Zk) representing obligor-specific, 
or idiosyncratic, components. 

All obligors in a sector share the first term in the 
right side of Equation 1. Also, all obligors in a 
sector, j, have a common , denoted by , 
where the subindex j denotes the sector to which 
obligor l belongs. However, each obligor has its 
own specific, uncorrelated component, . Thus, 
obligors in a given sector share the systemic 
component and have idiosyncratic components 
of similar magnitude. Hence, the index for any 
obligor in sector j is

 

An obligor creditworthiness index consists of 
three components: a systemic component driven 

by the macroeconomic factors, ; a sector-
specific component driven by the sector-specific 

factors, ; and an obligor-idiosyncratic 
component. Thus, Equation 1 can be rewritten as 
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 (2)

where

It is useful to write the index as

 (3)

where

 denotes the sector creditworthiness index 

common to all obligors in sector j and  
represents the percent of variance of the obligor 
index explained by the sector index. (The sector 
creditworthiness index is standard normal.) The 
logit model requires only sector creditworthiness 
indices, while the Merton model requires 
explicitly the obligor creditworthiness indices. 

The sector creditworthiness index in a factor-
based model contains both the systemic 
macroeconomic component and a sector-specific 
component. Furthermore, the only sector-specific 
factor that contributes to the financial health of 

an obligor in sector j is . Then, from 
Equation 2 and Equation 3, the sector 
creditworthiness index for a factor-based model 
becomes 

where

and . 

On the other hand, in a sector-based model, the 
sector creditworthiness index does not include a 
macroeconomic component. Since, in this case, 

the sector-specific factors are correlated, the 
creditworthiness index for a sector-based model 
can be expressed as

 

The functional forms for the index used in each 
model are summarized in Table 1.

The third and final component of the joint default 
model is a model of obligor default used to obtain 
conditional default probabilities in each scenario.

The conditional probability of default of an 
account is the probability that an obligor defaults 
conditional on a scenario. Given the definition of 
the sectors and the scenarios, all obligors in a 
given sector share the same conditional default 
probabilities. Formally, the conditional 
probability of default of an obligor in sector j, 
pj(Z), is the probability that an obligor defaults 
conditional on the state of the credit drivers, Z:

In factor-based models, default probabilities are 
conditioned on both macroeconomic and sector-
specific drivers. In the sector-based model, the 
probability of default of an obligor in sector j is 
conditioned on the sector factors only:
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Table 1: Creditworthiness indices in each model
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The computation of conditional probabilities 
requires a model that describes the functional 
relationship between the creditworthiness index 
(and, hence, the systemic and sector-specific 
factors) and obligor default probabilities. The 
functional relationship is a map of the index to 
the range [0,1]. 

We consider two types of models: a logit model, 
as presented, for example, in Wilson (1997), and 
a Merton model, as used in CreditMetrics. From 
an econometric perspective, the latter is usually 
referred to as a probit model.

In the logit model, the probability of default of 
an obligor in sector j is related to the sector 

creditworthiness index, , through 

 (4)

where aj and bj are two strictly positive 
parameters of the model. Note that Equation 4 
can alternatively be written as 

where . That is, the logit model 
can also be expressed in terms of the non-
standardized version of the creditworthiness 

index, . The variables  are 
referred to as the logit variables. 

Based on Equation 4 and the definition of the 
sector indices, the conditional default 
probabilities, pj(Z), for the sector-based and the 
factor-based logit models are, respectively, 

In the Merton model (Merton 1974), default 
occurs when the assets of a firm fall below a given 
boundary, generally defined by its liabilities. In 

this situation, an obligor’s creditworthiness 
index, Yl, can be considered to be the 
standardized returns of its asset levels. Since 
obligors in a sector are statistically identical, they 
share the same default boundary. Thus, default of 
an obligor l in sector j occurs when Yl falls below 
a given sector boundary, αj. Figure 1 provides a 
graphical representation of the model.

 Figure 1: Merton model of default

Since the indices are standard normal variables, 
the unconditional probability of default of obligor 
l in sector j can be expressed as 

 (5)

where Φ denotes the normal cumulative density 
function and αj is the unconditional sector 
threshold. The unconditional threshold is 
generally calculated by taking the inverse of 
Equation 5, .

From Equation 5, the probability of default, 
conditional on the index itself, is either zero or 
one. However, given the factor model defined in 
Equations 1 to 3, the probability of default of an 
obligor in sector j, conditional on a scenario, Z, is 
given by

 (6)
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The conditional threshold, , is the 
threshold that the idiosyncratic component must 
cross for default to occur in the state of the 
world, Z. Note that the set of q credit drivers 
includes both macroeconomic and sector-specific 
credit drivers.

The three default models are summarized in 
Table 2.

The logit function, Equation 4, and the formula 
for conditional default probabilities in the 
Merton model, Equation 6, have similar 
functional forms. This can be seen in Figure 2, 
which graphs the conditional default 

probabilities obtained from both models as a 
function of the sector creditworthiness index.

 Figure 2: Logit model versus Merton model
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model (which links the indices to the credit 
driver returns). The correlations of obligor 
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default correlations are fully defined by the sector 
index correlations and the default model.
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3. Obligor exposures and recoveries in a scenario

The exposure to an obligor j at the horizon t, Vj, 
is the amount that can be lost in outstanding 
transactions with that obligor when default 
occurs (unadjusted for future recoveries). We 
assume that the amount that can be lost is 
deterministic and does not depend on the state of 
the world: . Recoveries, in the event of 
default, are also assumed to be deterministic.

Therefore, the economic loss if an obligor in 
sector j defaults in any state of the world is

where is the recovery rate expressed as a 
fraction of the obligor’s exposure. This does not 
necessarily mean that recovery occurs precisely 
at default, only that it is expressed as a fraction of 
the exposed value at default.

4. Conditional loss distribution in a scenario

An important fact used for computation is that, 
conditional on a scenario, obligor defaults are 
independent. In the most general case, a Monte 
Carlo simulation can be applied to determine 
portfolio conditional losses; however, more 
effective computational tools exploit the property 
of obligor independence. For example, if a 
portfolio contains a very large number of obligors, 
each with a small marginal contribution, then the 
Law of Large Numbers (LLN) can be applied to 
estimate conditional portfolio losses. As the 
number of obligors approaches infinity, the 
conditional loss distribution converges to the 
mean losses over that scenario, and the 
conditional variance and higher moments 
become negligible. Hence, the conditional 
portfolio losses, L(Z), are given by the sum of the 
expected losses of each obligor:

 (7)

The number of accounts in each sector is 
assumed to be sufficiently large to apply 
Equation 7. This assumption is made for 

computational efficiency and can easily be 
relaxed.

Other efficient methods to compute conditional 
portfolio losses include the application of the 
Central Limit Theorem (which assumes that the 
number of obligors is large, but not necessarily as 
large as that required for the LLN), the 
application of moment generating functions with 
numerical integration, and the application of 
probability generating functions with a 
discretization of exposures.

5. Aggregation of losses in all scenarios 

Unconditional portfolio losses are obtained by 
averaging the conditional losses over all states of 
the world. Mathematically, the loss distribution is 
given by

where LP denotes the unconditional portfolio 
losses, θ denotes the level of losses and F(Z) is 
the distribution of Z.

The integral is obtained by performing a Monte 
Carlo simulation. The Monte Carlo simulation 
process is performed by 

• generating a set of joint scenarios on Z. In 
the factor-based model, scenarios are 

generated on , while in the 
sector-based model scenarios are generated 

only on . 

• computing, under each scenario

• the conditional default probabilities for 
each sector (using either the logit or the 
Merton model)

• the conditional portfolio losses 
(assuming that the LLN applies)

• obtaining the distribution of portfolio losses 
by averaging the distribution over all 
scenarios.

The methodology for calibrating each of these 
models is presented in Appendix 1.
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Case study

In this case study we apply the credit risk models 
described in the previous section to a sample 
credit card portfolio of a North American 
financial institution. The analysis period is the 
first quarter of 1999. 

The objective of the study is to compute the 
portfolio credit loss distribution of outstanding 
accounts over a one-year horizon and to analyze 
the various contributions to these losses. Credit 
losses are defined as those arising exclusively 
from the event of an obligor’s default. 

We describe the portfolio and historical data 
followed by some formal definitions and 
modelling assumptions. Thereafter, we present 
the macroeconomic factors and market data. For 
obvious reasons of confidentiality, the data 
presented has been normalized. However, this in 
no way affects the analysis or the conclusions 
that can be drawn from the results.

Portfolio description

The data consists of account information for 
credit cards issued between the last quarter 

of 1995 and the first quarter of 1999. Accounts 
are grouped in terms of their cohort and risk 
class. A cohort is formed by all the credit cards 
issued in a particular month. 

Cards are scored at acquisition. The score is an 
internal rating of the creditworthiness of a 
particular cardholder and assesses a borrower’s 
future repayment performance (see, for example, 
Mays (1998); Lewis (1992)). Scoring models 
have been commonly used to measure credit risk 
in retail portfolios (see, for example, Richeson et 
al. (1994)). 

A risk class is formed by accounts with similar 
scores. Accounts in the portfolio were originally 
classified into 20 risk classes, 18 of which are 
scored. The other two classes correspond to two 
types of unscored accounts. They require special 
consideration because of their size and specific 
characteristics. The first class, “unscored_1”, 
contains special accounts with cards issued 
directly to existing customers of the financial 
institution. The second class, “unscored_2”, 
contains cards for which a reliable score is not 
available (e.g., cards that were not scored or 
cards for which the score was lost).

 Figure 3: Composition of the portfolio 
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For modelling purposes, we construct sectors of 
similar accounts. Each sector must contain a 
large number of accounts in order to estimate the 
parameters of the model reliably. For this study, a 
sector is defined as all the accounts that belong 
to a specific risk class. Given that some risk 
classes in the low and high risk categories are 
very thinly populated, the number of sectors was 
consolidated from 20 to 11. With larger samples, 
it is possible to group accounts in sectors by 
adding, for example, geographical or 
demographic information.

The sample portfolio contains between half a 
million and a million cards. Figure 3 presents the 
percentage of the total number of accounts in 
each sector and the percentage of the total credit 

limit available to each sector. Sector 1 contains 
the highest risk accounts (low scores), while 
sector 9 contains the lowest risk accounts (high 
scores). Note that the unscored sectors represent 
a large percentage of the sample portfolio when 
measured by the percentage of total accounts or 
total credit limits. As is expected, on a per card 
basis, the average credit limit generally increases 

with the score. At any point in time, accounts in 

the portfolio are classified as performing, in 
default or closed. This data is used to estimate 
default rates. Figure 4 presents the cumulative 
percentage of accounts classified as either 
performing or in default, by sector.

 Figure 4: Cumulative percentage of performing 
and default accounts by sector

Portfolio as of first quarter, 1999

We measure the credit risk of all cards in the 
portfolio classified as performing at the end of the 
first quarter of 1999. Figure 5 shows the average 
balance per card and the utilization rate (given 
by the ratio of the current balance over the 
original credit limit). The average balance and 
the utilization rate are presented as deviations 
from the average balance per card and the 
utilization rate for the portfolio as a whole. For 
example, while the average balance per card in 
sector 1 is 30% above the average balance per 
card for the portfolio, the average balance per 
card in sector 9 is about 45% below.

 Figure 5: Average balance per card

Not surprisingly, high risk accounts carry a larger 
average balance since accounts with low scores 
are expected to be credit takers, while cards in 
the high score categories are expected to have a 
larger transactional component.

Modelling assumptions and data

All three models require 

• current ratings (or scores) for all accounts

• definition of sectors for analysis

• definition of default events

• default probabilities for each sector

• credit exposures

• recovery rates. 

In addition, the factor-based models also require the 
definition of macroeconomic factors or credit drivers 
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and their joint distribution. Below, we describe the 
assumptions and data used in the model.

Account scores

The score of each account at the current time is 
required to classify accounts into sectors and to 
estimate the likelihood of each account 
defaulting in the following year. Since the sample 
data contains only the scores of the credit cards 
when they were issued, we assume that all 
outstanding accounts retain a score similar to the 
one they were originally assigned; hence, they 
remain in the same sector that they were 
assigned to at acquisition. More precisely, we 
assume that overall, the portfolio has the same 
proportion of accounts in each sector. 

Sectors

As noted, 11 sectors are identified. The 
assumptions of the model are that a sector is 
homogeneous (i.e., accounts are approximately 
the same size) and all accounts within a sector 
are statistically identical.

Default events

A default event occurs when a particular 
cardholder fails to pay three minimum monthly 
payments on the credit card balance (and the 
loan is eventually charged-off by the bank) or 
when the cardholder declares bankruptcy. Given 
the method for estimating probabilities of default, 
we also assume that all accounts classified as 
performing at the time of the analysis were 
performing in the previous months. This 
assumption may require further validation.

Probabilities of default

In order to calibrate the joint default model, we 
require the one-year probabilities of default for 
all sectors and a description of how these default 
probabilities change through time. 

For each month in the sample, default probabilities 
are estimated as the observed default rates over the 
following year of all new accounts issued for each 
sector. The one-year default rates for these cohorts 
are measured by the cumulative number of defaults 
(charge-offs and bankruptcies) one year after a 
specific cohort was formed, as a percentage of the 
number of accounts issued. 

There are two reasons to estimate default rates 
from only the one-year default rates of accounts 
when they are issued. First, the only data 
available are the scores assigned to the cards on 
the issue date; second, using a new set of cards 
each month results in independent samples that 
can be used to estimate the distribution of default 
probabilities, even though the periods are 
overlapping. The latter is a subtle, yet important, 
point in the estimation of the joint default model.

The time series contains 28 one-year default 
rates for each sector. Table 3 summarizes the 
statistics for these series. The median and 
standard deviations are presented as a percent of 
the mean rate in each sector.

Average default probabilities decrease 
monotonically with the score of the sector. The 
average rates of sector unscored_1 and 
sector unscored_2 fall between the averages rates 
of sector 6 and sector 7. 

Although it is difficult to assess accurately the 
distribution of default rates using only a few 
observations, the distribution of default rates in 
general appears to be close to normal. We test for 
the normality of the distribution of default rates 
by applying a Chi-square goodness of fit test with 
a 5% confidence level. This suggests that a direct 
simulation of joint default probabilities might be 
a simple alternative to other models.

Table A1 in Appendix 2 provides the sample 
correlations of default probabilities between sectors. 
Correlations between default rates in each sector 
are substantial (they range between –12% and 88%) 
and, hence, cannot be assumed to be independent.

Credit exposures

Credit exposure is the amount the bank stands to 
lose in the event that a cardholder defaults, 
unadjusted for any recovery. Generally, when an 
account that has been performing accumulates 
missed payments prior to default, the outstanding 
balance quickly approaches the current credit 
limit (which for long-standing accounts may be 
different from the original credit limit). With 
timely updates on the evolution of credit limits, 
the credit exposure to an account that defaults is 
generally close to the last authorized credit limit.
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Applying portfolio credit models
We estimate the credit exposure of an account in 
default by the average utilization rate at the time 
of default (the product of the percentage by 
which the outstanding balance exceeds the 
original credit limit and the limit). Average 
exposures in each sector are shown in Figure 6 as 
deviations from average exposures for the 
portfolio.

 Figure 6: Credit exposure and average recovery 
rate per sector

Recovery rates

In the case of retail loans, like credit cards, 
factors such as the lack of collateral, the small 
size of loans and the expense incurred in court 
proceedings contribute to low recovery rates, if 
recovery occurs at all. In this study, recovery 
rates are deterministic and are based on the 
average loss rate in each sector. The recovery 
rates are presented in Figure 6 as deviations from 
the average recovery rate for the portfolio.

Credit drivers

For the factor-based models, nine 
macroeconomic variables are considered to be 
the credit drivers that systemically drive the 
default probabilities of each sector. These credit 
drivers are

 1. industrial production

 2. stock index

 3. consumer price index

 4. retail sales

 5. unemployment level

 6. three-month treasury bill at tender

 7. short-term government bond yield

 8. medium-term government bond yield

 9. long-term government bond yield.

Monthly data for the credit drivers from 
December 1982 to March 1999 is obtained from 
the Standard & Poor’s financial market and 
economic database (Standard & Poor’s 1999).

Calibration of joint default probability 
models

The estimation techniques used to calibrate the 
joint default probability models are presented in 
Appendix 1. In this section, we present the 
results as applied to the data in this case study.

The data on default probabilities cover the 
period from the last quarter of 1995 to the first 
quarter of 1998. Therefore, a time series of 28 
monthly overlapping one-year returns on each of 
the nine macroeconomic factors 
(xk(ti), i = 1,...,28, k = 1,...,9) is used to estimate 
the parameters of the joint default model. 

Sector-based logit model

The statistics for the logit variables in each sector 
are presented in Table 4. As can be seen in 
Table 4, the assumption of normality of the logit 
variables might not be accurate, particularly for 
sector 3, sector 4 and sector 5. However, 
additional data would be required to estimate 
this distribution with more confidence.

The correlation matrix of the logit variables is 
presented in Table A2 in Appendix 2. As is 
expected from the correlations of the default 
probabilities, correlations are substantial between 
the sector indices, ranging between –10% and 
82%.

Factor-based models 

The factor-based models are based on factors 
that are independent standard normal variables. 
(This assumption is made for computational 
convenience and does not restrict the analysis.) 
Independent factors are obtained from the 
original macroeconomic factors using principal 
component analysis (PCA).
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Applying portfolio credit models
With PCA, the credit drivers are expressed as 
linear combinations of uncorrelated standardized 
random variables called principal components 
(PC). The use of principal components reduces 
the number of credit drivers used in the 
estimation of the model.

Figure 7 presents the percent variance that each 
of the principal components explains, as well as 
the cumulative variance. Note that five factors 
explain more than 95% of the joint movements 
of all nine macroeconomic factors. Figure 8 plots 
the weights in each factor for the first five 
principal components. For example, the first 
factor, which explains over half of the joint 
movements of the credit drivers, has positive 
weights on retail sales, stock index, 
unemployment level, consumer price index and 
industrial production, and a negative weight on 
all interest rate credit drivers.

 Figure 7: Percent of variance explained by PCA

 Figure 8: Factor weights for the first five 
principal components.

For each default model, the coefficients of the 
multi-factor model are estimated using regression 
as described in Appendix 1. In this exercise, the 
regressors are the principal components of the 
nine macroeconomic credit drivers. (Note that 
the factor-based models with nine principal 
components are likely to suffer from over-fitting 
given the small number of observations. However, 
they will likely result in more conservative losses 
since they build higher correlations. For predictive 
purposes, and further risk decomposition, a model 
with fewer systemic factors is likely to be better 
behaved and more robust.)

Logit model

The regression results are presented in Table A3 
in Appendix 2. Note that some individual 
weights from the regression are not statistically 
significant, in part because of the small number 
of observations. Based on the regression, 
estimates for the systemic and idiosyncratic 
components of the indices are presented in 
Table 5.

The credit drivers explain between 38% and 73% 
of the variance of the sector creditworthiness 
indices. Figure 9 shows the explanatory power of 
the credit drivers by plotting the systemic 
component and the historical realizations of the 
index in the period of estimation for selected 
sectors. Clearly, the systemic component tracks 
the main tendencies of the indices. Only four 
sectors are shown, but the results are similar for 
the remaining indices.

Factor-based Merton model

The weights ( ) of the factor-based Merton 
model are summarized in Table A4 in 
Appendix 2. The systemic and sector-specific 
components of the indices are presented in the 
second and third row of Table 6. These are the 

relative sizes of the coefficients  and 

 as defined in Appendix 1 (Equation  and 

Equation ). The sector-specific component, , 
is presented in the last row of Table 6. 

βjk
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k
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S( )

2

σj
2

277



Enterprise credit risk using Mark-to-Future
 Figure 9: Systemic component and index over period of estimation for factor-based logit model

In the following sections, we present the results 
of the analyses performed on the sample 
portfolio, considering first the portfolio loss 
distribution calculated according to each of the 
three models, followed by an analysis of risk 
contribution and marginal risk by sector and 
finally, stress testing of some parameters of the 
model. 

Portfolio loss distribution

The portfolio loss distribution is estimated based 
on 5,000 Monte Carlo scenarios on the relevant 
credit drivers for each of the models. Scenarios 

on the logit variables for each sector, , are used 
in the sector-based logit model; scenarios on the 
nine macroeconomic credit drivers and the 11 
sector-specific credit drivers are used for the 
factor-based models. (Scenarios are generated 
directly on the standardized independent returns, 
or first on the macroeconomic factors and then 
transformed into standardized independent 
variables. Given the independence of the sector-
specific credit drivers, simulation could have 

been restricted to scenarios on the systemic 
credit drivers only.)

Sector-based logit model

The portfolio loss distribution is presented in 
Figure 10. The distribution is presented as 
deviations from the expected losses. As expected, 
the distribution is skewed and has a long fat tail 
on the left due to the nature of credit risk.

 Figure 10: Loss distribution for the sector-based 
logit model 

yj
S
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Applying portfolio credit models
Table 7 presents the relevant statistics of the loss 
distribution, including the expected losses, 
standard deviation, maximum percentile losses, 
unexpected losses (Credit VaR) and expected 
shortfall at the 99th and 99.9th percentiles for 
each of the models. Expected losses have been 
normalized to 1.0 and all the statistics are scaled 
to expected losses. Numbers in parenthesis 
represent the number of standard deviation from 
the expected losses. 

Credit VaR measures the capital required to 
cover unexpected losses (maximum percentile 
losses minus expected losses) at the chosen level 
(99% or 99.9%). In this case, capital is 
approximately 15% to 78% higher than the 
reserves, depending on the confidence level 
chosen. Note that Credit VaR (99%) is 
approximately three times the standard 
deviation; if the distribution were normal, Credit 
VaR would be only twice the standard deviation.

In addition to the most commonly known 
measures of risk, Table 7 also presents the 
expected shortfall (tail conditional loss). Expected 
shortfall measures the expected losses beyond a 
specified percentile of the distribution. By 
measuring the area under the tail of the 
distribution, expected shortfall provides a good 

measure of extreme losses, should they occur. On 
the other hand, maximum percentile losses are 
point estimates in the tail of the distribution and 
may present undesirable properties from a risk 
management perspective (see Artzner et al. 1998)

Factor-based logit model

The relevant statistics for the loss distribution 
using the factor-based logit model are presented 
in Table 7. The results for the factor-based loss 
distribution are similar to those for the sector-
based loss distribution. The loss distribution 
looks qualitatively similar to that in Figure 10. 
This implies that when scenarios are defined 
using explicit macroeconomic and sector-specific 
credit drivers, the joint behavior of default 
probabilities for each sector is largely accounted 
for. 

The main differences arise in the extreme tail of 
the distribution. For example, at the 99.9th 
percentile, expected shortfall is 5.6% lower in the 
factor-based model than in the sector-based 
model. This occurs because the sector-based 
model presents fewer correlations, since the 
model can only build correlations through the 
systemic credit drivers (the sector-specific factors 
are assumed independent).

Sector-based 
logit model

Factor-based 
logit model

Factor-based 
Merton model

Expected losses 1.0 1.0 1.0

Standard deviation 0.4 0.3 0.3

Maximum losses (99%) 2.1 2.1 1.9

Credit VaR (99%) 1.1
(3.2)

1.1
(3.2)

0.9
(2.8)

Expected shortfall (99%) 2.4 2.3 2.2

Maximum losses (99.9%) 2.7 2.6 2.5

Credit VaR (99.9%) 1.8
(5.0)

1.6
(4.6)

1.6
(4.8)

Expected shortfall (99.9%) 3.1 3.0 2.8

Table 7: Statistics for one-year loss distribution 
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Factor-based Merton model

The relevant statistics for the loss distribution 
using the factor-based Merton model are 
reported in Table 7. Again, the results are very 
similar to those of the logit model, particularly to 
the factor-based logit model. The functional 
equivalence of the factor-based models is clear 
since the expected and unexpected losses (at the 
99th and 99.9th percentiles) in the logit and 
Merton model are similar.

 Figure 11: Risk contribution by sector (%)

Risk contributions and marginal risk

Figure 11 presents the risk contributions of each 
sector. The graphs present the percentage 

decrease in the specified statistic if the accounts 
of the corresponding sector are eliminated. The 
risk contribution of any sector is roughly the 
product of the size of the sector and the marginal 
risk of increasing the exposure to a particular 
sector by one unit. Therefore, it is useful to 
understand whether the risk contribution of a 
particular score arises because a large portion of 
the portfolio falls in that sector, or because the 
sector has a high marginal risk. Figure 12 plots 
the marginal risk of every sector (marginal 
standard deviation as a percentage of mean 
exposure) against the mean exposure. 

From a risk management perspective, it is 
desirable to have a small exposure to sectors with 
high marginal risk and a large exposure to sectors 
with low marginal risk. Sectors with high 
exposure and high marginal risk are outliers, as is 
the case, for example, for sector unscored_1. One 
sector dominates another sector if it has both 
higher exposure and marginal risk. For example, 
sector 5 dominates sector 6, and sector 
unscored_1 dominates sectors 6 through 9 and 
unscored_2. Dominant portfolios are outliers 
that may point to opportunities for effective 
restructuring. 

 Figure 12: Marginal risk versus average exposure
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Applying portfolio credit models
Note in Figure 12 that, on a marginal basis, 
sectors 1 through 9 have progressively lower 
marginal risk, since, on average, accounts in 
these sectors have decreasing unconditional 
default probabilities. On a portfolio basis, 
however, correlations between obligor defaults 
may play a significant role. Therefore, one sector 
with a lower default probability than another may 
have a larger marginal contribution, since it has a 
higher correlation to the overall portfolio. This is 
the case, for example, for sector 2 and sector 3.

Stress testing

The results obtained using the factor-based logit 
model (Table 7) are designated as the base case. 
Comparisons to the base case are used to test the 
sensitivity of the loss distribution to changes in 
various parameters of the model. Given the 
functional equivalence of the factor-based logit 
and Merton models, and the similarity of the 
results, the comparison could have been based on 
the results of either model.

We perform four tests. First, we assess the 
appropriateness of the Monte Carlo simulation 
by computing sampling errors for the distribution 
estimates and comparing the results to a 
simulation with a larger number of scenarios. 
Second, we assess the impact of concentration 
risk by assuming all sectors are independent. 
Third, we estimate a model of the credit driver 
evolution using a larger data sample that better 
captures the impact of the business cycle. Finally, 
we apply a weaker definition of default that 

results in higher default rates, and estimate the 
portfolio losses that result from this larger set of 
events.

Sampling errors

The statistics in the base case are point estimates 
based on 5,000 Monte Carlo scenarios on both 
macroeconomic and sector-specific credit 
drivers. These estimates can be characterized 
using probabilistic confidence bounds. 
Confidence bounds on the mean and standard 
deviation are estimated using standard methods 
found in most statistics texts; the bounds on 
percentiles are estimated using rank statistics 
(Pritsker 1997). 

Table 8 presents the 95% confidence bounds for 
the expected losses, standard deviation and 
maximum losses at the 99th and 99.9th 
percentiles. The statistics are presented relative 
to expected losses in the base case. The numbers 
in parenthesis indicate the percentage deviation 
from the estimate. While the point estimate of 
the Maximum losses (99%) is twice the level of 
the expected losses, with 95% confidence, the 
true losses are within 5% of this ratio. At higher 
percentiles, the confidence bounds widen. 
Hence, the certainty of the results diminishes. 

Table 8 also summarizes the results of a 
simulation with 10,000 scenarios. Notice that the 
difference between the estimates of the two 
simulations is much smaller than the difference 
between the confidence bounds with 5,000 
scenarios. 

Estimate with 5,000 scenarios Estimate with 
10,000 

scenariosLower bound Estimate Upper bound

Expected losses 0.98
(1.5%)

1.00 1.02
(1.5%)

1.00

Standard deviation 0.34
(2.2%)

0.35 0.36
(4.4%)

0.35

Maximum losses (99%) 2.02
(4.3%)

2.11 2.22
(5.6%)

2.08

Maximum losses (99.9%) 2.46
(5.6%)

2.60 3.41
(31.2%)

2.67

Table 8: 95% confidence bounds for the estimates 
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For example, while the bounds for the Maximum 
losses (99%) scaled by expected losses are 
approximately 5% of the estimate, the difference 
between the two simulations is approximately 
1%. In general, the non-parametric bounds on 
maximum losses are fairly conservative. The 
accuracy of the Monte Carlo simulation is 
inversely related to the square root of the number 
of scenarios. Therefore, using four times as many 
scenarios reduces the uncertainty in the results 
by a factor of about two. 

Given the greater uncertainty in the estimation 
of the parameters of the model, these results 
suggest that increasing the number of scenarios 
may result in unnecessary additional 
computation. 

Independent defaults

We estimate the loss distribution assuming that 
defaults across sectors are uncorrelated and 
determined only by the sector-specific factor. 

Figure 13 illustrates the loss distribution assuming 
that sector defaults are independent. The 
distribution is graphed against deviations from 
expected losses in the base case. This loss 
distribution has a higher mass in the centre and a 
tail that is not as fat as the distribution of the base. 
The fact that the base case has a fatter tail can 
also be concluded by noticing that the standard 
deviation is smaller if defaults are independent. 
Therefore, even though extreme losses have the 
same distance from the mean, economic capital is 
higher if defaults are correlated.

 Figure 13: Loss distribution with independent 
defaults

Table 9 presents the statistics for the case of 
independent defaults and compares them to 
those of the base case. The results are presented 
relative to the expected losses in the base case. 
The numbers in parenthesis indicate the 
percentage deviation from the base case. 

Expected losses are not affected by correlations, 
therefore, credit reserves are not affected. 
However, economic capital is very sensitive to 
correlations. Assuming independent defaults, 
Credit VaR with independent defaults is about 
60% lower, compared to the base case. The ratio 
of the expected shortfall in the base case to the 
expected shortfall with independent defaults is 
between 70% and 75% for the 99th and 99.9th 
percentiles, respectively.

Losses with correlated credit risk drivers

The parameters of the credit risk models are 
estimated based on data for defaults and credit 
drivers that spans a short, 28-month time period 
(from the last quarter of 1995 to the first quarter 
of 1998). Thus, the sample probably does not 
cover a full business cycle. One major advantage 
of factor-based models in credit risk 
measurement is that data for the credit drivers is 
available for longer horizons. Thus, more 

Base case
Independent 

defaults

Expected losses 1.0 1.0

Standard deviation 0.3 0.2

Maximum losses 
(99%)

2.1 1.6

Credit VaR (99%) 1.1
(3.2)

0.6
(3.0)

Expected shortfall 
(99%)

2.3 1.8

Maximum losses 
(99.9%)

2.6 2.0

Credit VaR (99.9%) 1.6
(4.6)

1.0
(4.5)

Expected shortfall 
(99.9%)

3.0 2.1

Table 9: Statistics for independent defaults 
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information about the business cycle can be 
incorporated using factor-based models.

Recall that the default model with credit drivers 
consists of two parts: a multi-factor model that 
links the creditworthiness index of each sector 
(and hence the default probabilities) to the credit 
drivers, and a model for the evolution of the 
credit drivers. The results in the base case are 
obtained using data from the 28-month period to 
estimate both parts of the model. We can refine 
the estimates of portfolio losses by estimating the 
joint behavior of the credit drivers using data for 
longer horizons.

In this example, we perform the PCA on the 
credit drivers using quarterly non-overlapping 
data from a period that extends from the first 
quarter of 1983 to the first quarter of 1999. The 
regression model is re-estimated with the newly 
transformed credit drivers, which are correlated 
during the estimation period of the default 
model. The simulation is performed using these 
new parameters. Figure 14 presents the resulting 
portfolio loss distribution. The distribution is 
graphed against deviations from expected losses 
in the base case. 

 Figure 14: Loss distribution with correlated 
credit drivers

The statistics for the loss distribution for the case 
of correlated credit drivers are presented in 
Table 10. The results presented are relative to the 
expected losses in the base case. The numbers in 

parenthesis indicate the percentage deviation 
from the base case. 

Table 10: Statistics conditioned on correlated 
credit drivers

The expected losses are higher and the standard 
deviation is somewhat smaller than in the base 
case. Given that, the Credit VaR at the 99% level 
in both cases are very similar. However, the 
Credit VaR at the 99.9% level is more than 25% 
higher for correlated credit drivers, due to the 
longer tail associated with the distribution. In 
general, the statistics at the 99.9% level are 
between 25% and 39% higher than those of the 
base case. One explanation for these results is 
that the scenarios span a broader range of market 
and economic changes that better capture the 
effect the economic cycle has on consumer 
finance.

Default losses with false-performing accounts

At the end of each month, some accounts are 
classified as performing, though they are actually 
in default. The default losses computed in the 
base case do not incorporate the “potential” 
losses of these false-performing accounts. Thus, it 
is useful to estimate the impact on the relevant 
default statistics of classifying these accounts as 

Base case
Correlated 

credit 
drivers

Expected losses 1.0 1.1

Standard deviation 0.3 0.3

Maximum losses 
(99%)

2.1 2.1

Credit VaR (99%) 1.1
(3.2)

1.0
(3.0)

Expected shortfall 
(99%)

2.3 2.5

Maximum losses 
(99.9%)

2.6 3.2

Credit VaR (99.9%) 1.6
(4.6)

2.1
(6.7)

Expected shortfall 
(99.9%)

3.0 4.1
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true defaults. To accomplish this, the parameters 
of the models must be estimated with new 
regressions.

The histogram of the loss distribution and the 
statistics of the distribution are shown in 
Figure 15 and Table 11, respectively. In both 
cases, the results are presented relative to the 
expected losses in the base case. The numbers in 
parenthesis indicate the percentage deviation 
from the base case. 

 Figure 15: Loss distribution with false-
performing accounts 

Note that while changing correlations affects 
only dispersion statistics, changing default 
frequencies have a severe impact on the expected 
losses as well. Incorporating false-performing 
accounts increases the expected losses by 50% 
(because of the increase in estimated default 
probabilities) and increases economic capital by 
45% to 55%, depending on the statistic and 
confidence level being used.

Concluding remarks

We have developed a simulation-based 
framework to estimate the one-period credit loss 
distribution of a retail loan portfolio, and 
demonstrated the usefulness of the model by 
estimating one-year credit losses for a credit card 
portfolio. The framework allows risk to be 
decomposed into its various sources, and 
provides further understanding of risk 
concentrations and the impact of economic 
factors on the portfolio. 

We present and test three models to describe 
joint default behavior: a sector-based logit model, 
a factor-based logit model and a factor-based 
Merton model. While the sector-based model is 
purely descriptive, the factor-based models are 
causal models that capture the economic cycle 
through macroeconomic factors. Hence, the 
latter models are useful for further stress testing 
and estimating conditional losses using economic 
scenarios.

All three default models yield comparable results 
when the same data is used. The discrepancies 
that arise are due to different distributional 
assumptions. The discrepancies observed are 
small, and are probably amplified by the scarcity 
of data. More statistical analysis is required to 
explore the differences between the models.

Several reasonable and commonly used 
assumptions may influence the results of the 
models. First, sector indices and factor returns 
are assumed to be joint normally distributed. 
Although this is common practice, it may be 
unrealistic; more research is required to 
determine the effect of this assumption. Second, 
the exposure and recovery rates per sector are 
deterministic; although this is common to most 
portfolio models today, it may be useful to explore 

Base case
False- 

performing 
accounts

Expected losses 1.0 1.5

Standard deviation 0.3 0.5

Maximum losses
(99%)

2.1 3.1

Credit VaR (99%) 1.1
(3.2)

1.6
(3.1)

Expected shortfall 
(99%)

2.3 3.5

Maximum losses 
(99.9%)

2.6 4.0

Credit VaR (99.9%) 1.6
(4.6)

2.5
(4.8)

Expected shortfall 
(99.9%)

3.0 4.5

Table 11: Statistics including false-performing 
accounts 
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the implication of stochastic exposures using an 
integrated market and credit risk model, such as 
that introduced in Iscoe et al. (1999). Finally, 
each sector is assumed to have a large, fully 
diversified sub-portfolio; this is reasonable given 
the large number of accounts in each sector, but 
may lead to some underestimation of credit risk. 
This assumption could be relaxed easily during 
the simulation.

One of the main limitations in the case study is 
that of data availability. Although the results are 
useful, a large amount of historical data may be 
required to obtain more robust estimations of 
joint default probability distributions and factor 
models. The lack of sufficient data leads to two 
problems.

The first problem is that the uncertainty 
associated with the parameters entering the 
model is quite large. This does not mean that the 
parameters should be discarded but, rather, that 
they should be treated as “best guesses,” given 
the current information. Consequently, more 
stress testing and sensitivity analysis must be 
performed. If conservative estimates of credit risk 
are required, one can apply the most 
conservative parameters obtained from the data.

The second problem is that given that the default 
data covers less than three years, the model may 
not capture the dependency of default 
frequencies on the economic cycle. In this case, 
data over a longer time horizon, which spans 
economic cycles, is required. We show how the 
impact of economic cycles can be addressed using 
multi-factor models. Of course, more work in this 
area is required.

Since data availability is often an issue, it is 
important, whenever possible, to complement 
the data used for estimation with external 
industry/agency data, as well as reasonable, 
conservative data acquired from internal 
experience.

The results from the case study clearly show that 
some refinement in the modelling of the portfolio 
may lead to the greatest improvements. For 
example, as expected, there is a large 
concentration of losses in the unscored sectors. 
These sectors are also the most likely to be 

inhomogeneous sectors; the use of historical data 
to estimate default rates for these sectors may be 
less accurate. Further refinement and 
classification of accounts in these sectors is likely 
to lead to substantial enhancements in the credit 
risk assessment of the portfolio.

In this study, the score of each card at acquisition 
is used as an indicator of default likelihood over 
the following year. This means that the results 
assume that the credit cards in the portfolio at 
the time of the analysis maintain the score they 
were assigned initially, or, alternatively, that 
migration across sectors is such that the net of 
migration across sectors is very small. This may 
be a strong assumption. A better way to address 
this problem is to use current, up-to-date scores 
and account characteristics to group obligors into 
sectors. However, for many institutions this data 
may not be readily available and acquiring it may 
be a costly proposition. An alternative in this 
case is to use Bayesian methods to refine the 
composition of the cards in each sector, given all 
historical default experience.

The methodology presented in this paper can 
also be used to obtain risk management reports 
that include further sensitivity analysis and stress 
testing, RAROC and risk-return analysis, 
systemic and idiosyncratic risk decomposition, 
risk contributions of economic factors and 
conditional credit risk calculation using factor-
based models, and economic forecasts.

In conclusion, the application of portfolio credit 
risk models to retail portfolios is in its infancy and 
much more research is required. Of particular 
importance is the validation and backtesting of 
the models. This is an issue that was raised by the 
Basle Committee (1999) and work in this area 
will likely require extensive (external) data and 
intensive computation (see, for example, 
Lopez (2000)). 
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Appendix 1. Calibration of joint default 
probability models

The parameters of the joint default probability 
models are estimated as follows.

Sector-based logit model

Data input: for each sector j, a time series of 
equally-spaced observed default rates 

, i = 1,...,n.pj ti( )
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Output: joint distributions of the sector indices, 

. 

Since the indices are assumed to be joint normal, 
we estimate the mean for each index and the 
covariance matrix. For each sector, the time 
series of default probabilities is transformed into a 
time series of logit variables

, i = 1,...,n

The mean, volatility and correlations of the 
indices are obtained from the sample mean, 
volatility and correlations of this time series. 

The indices, , are assumed to be normal (not 
standard normal); they have a non-zero mean, 

, and non-unit standard deviation, . It is 
straightforward to express the model in terms of 

standard normal indices .

Factor-based models

Data input: a time series of equally spaced 
observed default rates for each sector j and of 
macroeconomic factors returns, 

, , k = 1,..., qM, i = 1,...,n.

Output: the definition of the q independent 
credit drivers and the multi-factor model joining 
the indices to the credit drivers. Since the credit 
drivers include qM macroeconomic factors and 
qS sector-specific factors, the total number of 
credit drivers is q = qM + qS. 

We write the (row) vector of uncorrelated 
standard credit drivers as 

 where the  and  

denote macroeconomic and sector-specific credit 
drivers, respectively. A sector-specific factor 
affects only a single sector. Thus, for a given 
obligor l in sector j, the creditworthiness index in 
Equation 2 can be written as

where 

A set of independent factors are constructed 
from the macroeconomic factors, as follows: 

• First, obtain a time series of standardized 
factor returns for the macroeconomic credit 

drivers, , k = 1,..., qM 

where and are the sample mean and 
standard deviation of each factor.

• Second, using principal component analysis 
(PCA), obtain a set of independent credit 
drivers as the linear combinations of the 
correlated macroeconomic factors. A brief 
overview of PCA is given in Kreinin et al. 
(1998).

• Third, construct a time series of the new 
uncorrelated standardized factors 

, i = 1,...,n; where the 

coefficients  are determined from the 
eigenvalues and eigenvectors in the PCA.

The methods used to obtain the weights for the 
creditworthiness index of each model are 
outlined below.

From Tables 1 and 2, the model of the 
conditional probability of default for the factor-
based logit model is 

 

where

and 

The factor weights are calculated as follows:

• Similar to the sector-based model, from the 
time series of default rates in each sector, we 
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obtain a time series of logit variables:

, i = 1,...,n

Each logit variable has mean  and 

standard deviation .

• The component of the multi-factor model 
that depends on the macroeconomic factors 
is estimated by minimum least squares using 

where  are independent normal errors.

• The loading of the sector-specific factor, , 
is computed by matching the total volatility 
of the multi-factor model of the sector and 
the observed sample index volatility:

• Finally, the parameters of the model are 
given by

The process for the factor-based Merton model 
is similar to that described for the logit model. 

We estimate the parameters , ,  and  
such that 

 

and 

These parameters are obtained as follows:

• From the time series of default rates in each 
sector, we obtain a time series of inverse 
normal variables: 

, i = 1,...,n.

• For each sector j, we first apply minimum 

least squares to estimate  and  from the 
regression model

• Then, we obtain the sensitivity of the inverse 
standard normal variable of sector j to the 
sector-specific credit driver by the following 
relationship

 

where  is the variance of , which is 

the inverse standard normal variable for the 
sector over the period.

• The coefficients in the multi-factor model 
are then obtained by properly scaling the 
regression coefficients by the volatility of the 
idiosyncratic obligor component of the index

where the volatility is finally given by

The derivation of these formulae is presented 
below. Recall from Equation 6 that the 
conditional default probabilities in the Merton 
model are given by
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 (A2)

From the time series of conditional default 
probabilities and macro-economic factors, we 

estimate the parameters , ,  and  in 
Equation A2 with the extra constraint that

 (A3)

Applying an inverse normal transformation and 
making the change of variables

 (A4)

Equation A2 becomes the equation defined for 
the regression:

By regressing the inverse normal of the 
conditional default probabilities to the macro-

economic factors we obtain the parameters , 
and the residual volatility gives the sensitivity of 
the inverse to the sector-specific factor:

  (A5)

where  is the variance of .

The original parameters of the model are then 
obtained as follows. First the volatility  can be 
estimated from Equation A3, Equation A4 and 
Equation A5:

Therefore, .

Finally ,  and  are obtained by simply 
substituting back in Equation A4.
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Appendix 2. Estimation results  

Sector 1 2 3 4 5 6 7 8 9 u_1 u_2

1 100

2 37 100

3 62 72 100

4 76 57 88 100

5 68 67 73 73 100

6 37 35 57 62 56 100

7 26 22 36 37 47 55 100

8 13 43 41 19 33 8 9 100

9 29 34 38 35 35 42 50 14 100

u_1 35 14 35 45 44 52 –2 –6 8 100

u_2 16 42 35 30 20 28 44 –12 16 –9 100

Table A1: Sample correlations of default rates per sector (%)
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Sector 1 2 3 4 5 6 7 8 9 u_1 u_2

1 100

2 32 100

3 54 81 100

4 69 721 82 100

5 63 641 72 61 100

6 38 25 37 58 40 100

7 29 27 38 45 42 63 100

8 30 52 45 34 37 -3 -10 100

9 21 34 36 31 29 33 29 9 100

u_1 49 21 41 44 48 48 4 1 8 100

u_2 22 37 27 47 14 35 389 10 7 -1 100

Table A2: Sample correlations of logit variables (%)

Sector

1 2 3 4 5 6 7 8 9 u_1 u_2

Constant 2.550 3.024 3.614 3.740 3.977 4.222 4.541 4.823 5.820 4.244 4.420

Factor 1 0.183 -0.049 -0.016 0.004 0.129 0.002 0.081 0.033 0.208 -0.054 -0.136

Factor 2 0.002 0.114 0.085 0.069 0.100 0.049 0.122 -0.031 -0.005 -0.060 -0.044

Factor 3 -0.096 0.028 0.049 -0.115 0.082 -0.125 0.041 -0.005 -0.058 0.047 -0.117

Factor 4 0.063 0.101 0.048 0.062 0.020 0.068 0.075 -0.043 0.089 -0.002 0.175

Factor 5 0.007 -0.077 0.142 0.043 0.008 0.012 -0.007 -0.049 0.129 0.126 -0.091

Factor 6 -0.061 0.143 0.154 0.177 0.087 0.108 0.111 -0.044 0.121 0.001 0.260

Factor 7 -0.055 -0.102 -0.078 -0.111 -0.066 -0.077 -0.134 -0.209 -0.055 -0.021 -0.122

Factor 8 0.133 0.144 0.289 0.222 0.179 0.231 0.171 0.134 0.135 0.013 0.241

Factor 9 -0.300 -0.208 -0.364 -0.337 -0.302 -0.191 -0.081 -0.100 -0.091 -0.349 0.014

Adjusted R2 47.96 53.50 59.84 48.66 60.12 20.27 7.24 21.18 25.71 25.42 45.75

F-statistic 3.765 4.196 5.470 3.843 5.523 1.763 1.234 1.806 2.038 1.985 3.530

Table A3: Regression results for factor-based logit model and F-statistics
290



Applying portfolio credit models

Sector

1 2 3 4 5 6 7 8 9 u_1 u_2

Constant -1.45 -1.68 -1.93 -1.98 -2.08 -2.18 -2.30 -2.41 -2.75 -2.19 -2.25

Factor 1 -0.09 0.02 0.01 0.00 -0.05 0.00 -0.03 -0.01 -0.07 0.02 0.05

Factor 2 0.00 -0.05 -0.03 -0.03 -0.04 -0.02 -0.04 0.01 0.00 0.02 0.02

Factor 3 0.04 -0.01 -0.02 0.04 -0.03 0.05 -0.02 0.00 0.02 -0.02 0.04

Factor 4 -0.03 -0.04 -0.02 -0.02 -0.01 -0.02 -0.03 0.02 -0.03 0.00 -0.06

Factor 5 0.00 0.03 -0.06 -0.02 0.00 0.00 0.00 0.02 -0.04 -0.05 0.03

Factor 6 0.02 -0.06 -0.06 -0.07 -0.03 -0.04 -0.04 0.02 -0.04 0.00 -0.10

Factor 7 0.03 0.04 0.03 0.05 0.03 0.03 0.05 0.08 0.02 0.01 0.04

Factor 8 -0.06 -0.06 -0.12 -0.09 -0.07 -0.09 -0.07 -0.05 -0.04 0.00 -0.09

Factor 9 0.14 0.09 0.15 0.14 0.12 0.07 0.03 0.04 0.03 0.14 -0.01

Sector 1 0.14

Sector 2 0.15

Sector 3 0.12

Sector 4 0.14

Sector 5 0.09

Sector 6 0.14

Sector 7 0.14

Sector 8 0.11

Sector 9 0.11

Sector u_1 0.14

Sector u_2 0.13

Table A4: Weights of factor-based Merton model
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