A shortcut to sign Incremental Value-at-Risk for risk allocation

Dirk Tasche∗ Luisa Tibiletti†

March 27, 2002

Abstract

Approximate Incremental Value-at-Risk formulae provide an easy-to-use preliminary guideline for risk allocation. Both the cases of risk adding and risk pooling are examined and beta-based formulae achieved. Results highlight how much the conditions for adding new risky positions are stronger than those required for risk pooling.

JEL classification: C13; D81; G11; G12.

Key words: Incremental Value-at-Risk (IVaR); Risk pooling; Risk adding.

1 Introduction

Incremental Value-at-Risk (IVaR) is becoming a standard tool in investment management industry to identify strategies that enhance returns and control risk. In theory, IVaR is a metrics that measures the contribution in terms of relative Value-at-Risk (VaR) of a position or a group of positions with respect to the total risk of a pre-existent portfolio. In the academic literature the attention to this technique can be traced back to the some works by Dowd [1998, 1999, 2000]. Nevertheless, in recent times more practice-oriented researchers have dwelt on this tool for a twofold purpose: 1) hedging and speculating with options (see Mina [2002]) and 2) reducing the risk in a risk-return analysis. Two slightly

∗Deutsche Bundesbank, Postfach 10 06 02, 60006 Frankfurt, Germany; e-mail: tasche@ma.tum.de
The contents of this paper do not necessarily reflect opinions shared by Deutsche Bundesbank.

†Corresponding author: Luisa Tibiletti, Dipartimento di Statistica e Matematica, Università di Torino, Piazza Arbarello, 8, 10122 Torino, Italy; e-mail: luisa.tibiletti@unito.it
different approaches follow: one leads to a risk adding model, the other to a risk pooling model.

In theory, a straightforward way to calculate IVaR requires us to create a new portfolio incorporating the candidate new strategy, then reassess VaR and finally compare it with the previous one. Unfortunately, due to the non-linearity of VaR, computation may turn out to be too time-expensive thus being a bar to real-time decision making. Having at disposal friendly-to-use approximating formulae may be a first step to overcome this drawback. This is just the aim of the paper.

Beta-based approximations of IVaR are achieved. Formulae highlight a too often underestimated aspect. By virtue of the different diversification impact, conditions for adding new positions in the portfolio are much stronger than those for their pooling. A final warning. Although the formulae are exact for elliptical returns, as we skip behind this assumption they might grow lower in confidence, since they provide only a linear approximation. Clearly, higher order approximations should be worked out. Although this is technically attainable, it drives to cumbersome formulae which will be in contrast to the spirit of this paper. In conclusion, the linear approximation formulae can be a useful tool for a preliminary screening of the alternatives in risk allocation.

The paper is organized as follows. In Section 2 Incremental VaR (IVaR) is defined. An approximate IVaR formula for risk adding is introduced in Section 3, whereas one for risk pooling occurs in Section 4. A conclusion in Section 5 ends the note.

2 Incremental VaR

VaR measures the smallest level of underperformance of a position that would occur with a low probability by a given time horizon. In the following, we will deal with the excess return of a position with reference to a benchmark. The benchmark may vary with the context: it could be the liabilities for pension funds, the investment benchmark for traditional asset managers, or just the cash for hedge funds. Let us give a sketchy definition list. Define for random a variable Z and $\alpha \in (0, 1)$ the α-quantile q_α of Z by

$$q_\alpha(Z) \overset{\text{def}}{=} \inf \{ z \in \mathbb{R} \mid P[Z \leq z] \geq \alpha \}. \quad (2.1)$$
In what follows, we use the definition of VaR relative to the mean in the sense1 of Jorion [1997, page 87]:

\[
\text{VaR}_\alpha(Z) \overset{\text{def}}{=} E(Z) - q_\alpha(Z) \tag{2.2}
\]

Let us focus on the impact on the current portfolio by a prospective asset purchase or disposal. Stand-alone the risk involved in the individual asset, we need also to take into account the effects of this position on the new aggregate portfolio. For notation convenience, let us fix \(\alpha\) (usually \(\alpha = 0.01\) or \(\alpha = 0.05\)) and drop the symbol \(\alpha\) in future formulae. Thus, we define the Incremental VaR (IVaR) as the difference between the VaR of the new and the current portfolio:

\[
\text{Incremental VaR} = \text{VaR (new portfolio)} - \text{VaR (current portfolio)}
\]

Clearly, IVaR can be positive, if the candidate strategy adds risk to the current portfolio, or negative, if the strategy acts like a hedge to the existing portfolio risks, or zero if it is neutral.

In the sequel, we will deal with two strategies to allocate risk, termed risk adding and risk pooling.

3 IVaR for risk adding

Let \(X\) denote the random excess return of the current portfolio. Suppose we want to measure the contribution of a position \(Y\) or a group of positions to the total risk of the portfolio. Two situations may occur. We could want to measure the portfolio risk after having sold \(Y\) or a portion \(aY\) of it, and having invested the proceeds in cash. But we could also focus on the portfolio after having bought the position or a portion \(aY\) of it, by drawing the requested money from cash. In any case, the result is

\[
\text{new portfolio} \overset{\text{def}}{=} X + aY \tag{3.1}
\]

where \(a < 0\) and \(a > 0\) refer to the selling and buying case, respectively; clearly, if \(a = 0\) no change in the portfolio occurs.

According to the definition of IVaR, we get

\[
\text{IVaR} = \text{VaR (new portfolio)} - \text{VaR (X)}
\]

1Another possibility would be to use the absolute definition \(\text{VaR}_\alpha(Z) \overset{\text{def}}{=} -q_\alpha(Z)\).

Clearly, the two of definitions coincide if \(E(Z) = 0\).
Writing IVaR as a function of the variable a, we obtain
\[
 f(a) = \text{VaR}(X + aY) - \text{VaR}(X) = a \mathbb{E}[Y] + q(X) - q(X + aY)
\]
An easy way to get a rough estimate of IVaR is to look for a linear approximation. Since $f(0) = 0$, in case of f being differentiable with respect to a the sign of IVaR for small positive a is just the sign of $f'(0)$. Conditions for f to be differentiable and an explicit formula for the derivative are provided in Gouriéroux at al. [2000], Lemus [1999], and Tasche [1999]. Application of this formula yields
\[
 f'(a) = \mathbb{E}[Y] - \mathbb{E}[Y | X + aY = q(X + aY)],
\]
where $\mathbb{E}[Y | Z = z]$ denote the conditional expectation of Y given that the random variable Z equals z, and in particular
\[
 f'(0) = \mathbb{E}[Y] - \mathbb{E}[Y | X = q(X)].
\]
Observe that $\mathbb{E}[Y | X = q(X)] - \mathbb{E}[Y]$ is the best prediction of $Y - \mathbb{E}[Y]$ given that $X - \mathbb{E}[X] = q(X) - \mathbb{E}[X]$. In the case of the conditional expectation $\mathbb{E}[Y | X = \cdot]$ not being available, a reasonable approximation would be the best linear prediction of $Y - \mathbb{E}[Y]$ given that $X - \mathbb{E}[X] = q(X) - \mathbb{E}[X]$. This linear prediction is given by
\[
 (q(X) - \mathbb{E}[X]) \frac{\text{cov}(X,Y)}{\text{var}(X)},
\]
where cov and var denote covariance and variance respectively, as usual. By (2.2), we therefore obtain $f'(0) \approx \beta_{yx} \text{VaR}(X)$, where $\beta_{yx} = \frac{\text{cov}(X,Y)}{\text{var}(X)}$ is the standard beta coefficient of Y with respect to X. This way, a linear approximation of IVaR comes out as
\[
 IVaR \approx \beta_{yx} \text{VaR}(X) \cdot a. \tag{3.2}
\]
Now, a clear-cut tool for discriminating profitable strategies has emerged. Just a glance at the sign of β_{yx} is sufficient to give a rough information on the sign of the risk contribution of the position Y.

Remark 1
(i) If we are considering the position aY for purchasing (so that $a > 0$), the negativeness of β_{yx} signals that it will act like a risk diversifier. Vice versa, if we are looking for measuring the risk contribution of the position aY already contained in the portfolio, the negativeness of β_{yx} signals that when sold it will act like a risk contributor. In conclusion, as intuition suggests, adding aY tends to reduce the risk.
only if \(Y \) is a super-defensive asset, i.e. the return goes in the opposite direction of that of \(X \). Vice versa, selling \(aY \) tends to reduce the risk only if \(Y \) is a conservative or aggressive asset with respect to \(X \), i.e. the return of \(Y \) goes in the same direction of that of \(X \).

(ii) Approximation (3.2) holds under very loose conditions on distributions. For instance, it suffices that \(X \) and \(Y \) have a continuous joint density. This is a standard assumption in financial modelling.

(iii) It can be proved that (3.2) is just the exact IVaR if \(X \) and \(Y \) are normal returns (or more general, if \(X \) and \(Y \) are jointly elliptical distributed\(^2\)). Nevertheless, as we skip behind this assumption, the formula has to be handled with caution since it may lead to a misleading information. A way to overcome this drawback is working out higher order approximations (see Gouriéroux at al. [2000] for the second order derivative of VaR). But a dark side of the coin exists. The higher the approximation order the more cumbersome is the formulas. So, this approach is just in contrast to the spirit of this paper.

4 IVaR for risk pooling

As in the previous section, let \(X \) be the random excess of return of the current portfolio. Let \(aY \) be the position we are considering to purchase. The aim in this case is just to arrive at portfolio diversification. If the asset is purchased, the portfolio is re-balanced, so

\[
\text{new portfolio} \overset{\text{def}}{=} \frac{X + aY}{1 + a} \tag{4.1}
\]

where \(a > 0 \) and the factors \(\frac{1}{1+a} \) and \(\frac{a}{1+a} \) are the relative weights of the assets \(X \) and \(Y \), respectively. Therefore,

\[
\text{IVaR} = \text{VaR (new re-balanced portfolio)} - \text{VaR (old portfolio)}.
\]

Proceeding as in the risk adding case, let us write IVaR as a function of the variable \(a \):

\[
g(a) = \text{VaR} \left(\frac{X + aY}{1 + a} \right) - \text{VaR} \left(X \right) = \mathbb{E} \left[\frac{X + aY}{1 + a} \right] - q \left(\frac{X + aY}{1 + a} \right) - \mathbb{E} [X] + q (X)
\]

\(^2\)Elliptical distributions, include the normal distribution as a special case, as well as the Student’s t-distribution and the Cauchy distribution. Elliptical distributions are called “elliptical” since the contours of the density are ellipsoids. Kelker [1970] proved that VaR can be written in term of standard deviation when the underlying distribution is elliptical.
In particular, we have \(g(0) = 0 \). In case of \(g \) being differentiable with respect to \(a \) we obtain

\[
g'(a) = (1 + a)^{-2} E[Y] - E[X] + q(X + aY) - (1 + a) E[Y|X + aY = q(X + aY)],
\]

and in particular

\[
g'(0) = E[Y] - E[Y|X = q(X)] - \text{VaR}(X)
\approx (E[X] - q(X)) \frac{\text{cov}(X,Y)}{\text{var}(X)} - \text{VaR}(X).
\]

Therefore \(g'(0) \approx (\beta_{yx} - 1) \text{VaR}(X) \), and the linear approximation of IVaR turns out to be

\[
\text{IVaR} \approx a (\beta_{yx} - 1) \text{VaR}(X).
\] (4.2)

Remark 2
(i) Although formula (4.2) looks similar to (3.2), a striking difference sticks out. In case of pooling, the watershed for discriminating profitable strategy is no longer the sign of \(\beta_{yx} \), but the sign of \((\beta_{yx} - 1)\). So, it may happen that even if \(\beta_{yx} \) is positive (but less than one) and hence \(X \) and \(Y \) are positively correlated, pooling of at least a small portion \(aY \) may be always advisable for reducing the risk. Let us be more precise, consider the case of \(0 < \beta_{yx} < 1 \), i.e. \(Y \) is a defensive asset. Because of positive correlation, \(Y \) goes in the same direction as \(X \), but \(Y \) varies less than \(X \) does. This means that the variations of the excess return \(Y \) grow lower than those of \(X \) do. In the case of \(\beta_{yx} \leq 0 \), i.e. \(Y \) is a super-defensive asset, variations of \(Y \) go in the opposite direction of those of \(X \). In conclusion, except in the case of a super-aggressive asset with \(\beta_{yx} > 1 \), pooling at least a small portion \(aY \) is always an advisable strategy for reducing risk.

(ii) The fact that the risk pooling conditions are much looser than those for risk adding, should not surprise. In a normative framework, the argument about different attitudes in accepting risk adding and risk pooling can be tracked back to the so-called ”Samuelson’s Fallacy of Large Numbers” (see Ross [1999] and the references thereby). By virtue of the favorable diversification effect, the acceptance of pooling in the portfolio a sufficiently long string of single-rejected risks is considered ”rational”. Vice versa, the eventual acceptance of adding single-rejected risks is much more questionable.

(iii) Again, (4.2) is exact for elliptically distributed returns, but may lose its reliability as we relax this assumption.
5 Conclusion

Beta-based approximation formulae for IVaR are achieved in both cases – adding a new risk and pooling it with the existing portfolio. These approximations are based on recent results on the differentiability of VaR. The formulae will give the right indications for trade decisions as long as the weights of the assets under consideration are small compared to the weights of the unchanged assets. One can see from the formulae that the conditions for adding new positions are by far stronger than those for pooling.

References

Lemus, G. "Portfolio Optimization with Quantile-based Risk Measures.” PhD thesis, Sloan School of Management, MIT.
http://citeseer.nj.nec.com/lemus99portfolio.html

http://citeseer.nj.nec.com/tasche00conditional.html