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Abstract

Risk adjusted performance measurement for a portfolio involves calculating the
risk contribution of each single asset. We show that there is only one definition
for the risk contributions which is suitable for performance measurement, namely
as derivative of the underlying risk measure in direction of the considered asset
weight. We also compute the derivatives for some popular risk measures including
the quantile-based value at risk (VaR) in a rather general context. As a consequence
we obtain a mean-quantile CAPM.

Keywords: Performance measurement, portfolio selection, value at risk (VaR), quan-
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1 Introduction

Suppose that an investor wants to place a fixed amount of capital into some asset. He

has got two exclusive choices: asset j, j = 1, 2, yields the expected return mj with risk rj.

Evidently, if the risks are equal, he will choose the asset with the higher yield. In case of

different risks (say r1 < r2) there is not such an obvious answer. No doubt that m2 must

be higher than m1 for asset 2 to be eligible at all. But how large should be the difference

in returns to make asset 2 more attractive?

The Markowitz portfolio theory (cf. [17]) is the classical reference for a solution to the

problem. It is still effective nowadays (cf. [21]). Below, we will consider the theory in some

detail. At the moment, we only note that Markowitz’ notion of risk is rather abstract. It is

considered a measure of uncertainty in return, and is defined mathematically as standard

deviation of the return.

Despite its computational convenience this perspective has some drawbacks. From the

technical point of view, it is not desirable that not only the unfavorable but also the
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favorable fluctuations of the return around its mean have an impact on its standard

deviation. The way to handle this problem is clear: one has to make use of other definitions

of risk. We will see some examples in Section 3.

But the economic interpretation of risk as standard deviation is difficult, as well. Is risk

really an immaterial quantity? A tangible explanation of the notion could be useful. Let

us consider a highly leveraged investor, i.e. an investor financing his assets largely with

borrowed money. Above all, here the investment risk is creditors’ risk: if the assets do not

yield enough the investor has to fall back on his equity in order to meet his obligations;

as soon as the equity is used up he goes bankrupt, and the creditors suffer losses.

This example suggests defining investment risk as the amount of equity that ensures with

sufficient certainty the investor’s capability to pay off his debt. With other words: risk is

a capital reserve for preventing insolvency. In case of financial institutions – which are

typically highly leveraged – the notion might be more restrictive. For instance, in [18]

(p. 9), the “role of capital in a bank” is described as acting “as a buffer against future,

unidentified, even relatively improbable losses, whilst still leaving the bank able to operate

at the same level of capacity”. A bank’s creditors are typically depositors; in case of an

insurance company they are policy holders, and in case of hedge funds they might be

other financial institutions.

Equating risk to investor’s required capital supplies an easy solution to the problem,

formulated at the beginning, of finding the more profitable among two assets. Simply

compute the return by
mj

rj
, j = 1, 2. Hence the investor should decide in favor of asset 1

if and only if m1

r1
≥ m2

r2
. This kind of computing the return is commonly called RORAC

(“Return on Risk-Adjusted Capital”, cf. [18] p. 59), and the comparison procedure is

called “Risk-Adjusted Performance Measurement”.

As a matter of course, there is now a new problem: how to determine the amount of

capital that is necessary for preserving solvency? Here the notion of value at risk (VaR)

offers its services: the amount of capital – often called economic capital – must be so large

that the investor’s solvency is ensured at level α (for instance α = 99 %). VaR has become

particularly popular since the Basle Committee on Banking Supervision ([4]) permitted

banks to make use of it in their internal models for the capital required by market risks.

As long as the returns (or log-returns) of a portfolio are normally distributed – implicitly,

this is often assumed for market risk portfolios – the VaR method and the Markowitz

theory yield identical results when applied for portfolio optimization. However, the normal

distribution assumption cannot be uphold even for market risks as soon as the portfolio

includes underlyings and derivative instruments. This observation is evident for instance

from the simulation results in [20], Sec. 2. The normal distribution assumption seems to

be completely wrong in case of a credit portfolio. For this and other reasons the Basle

Committee for Banking Supervision hesitates to permit banks to make use of VaR models

for calculating economic capital (cf. [5]). Nonetheless, some standard software packages

for credit portfolio management enable its users to optimize portfolios only by variance-
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based Markowitz methods; at the same time they compute the economic capital as VaR

at a given confidence level (see [11] or [16]).

In this paper we examine how to combine capital allocation via VaR (or via other risk

measures) and portfolio optimization in a compatible manner. The notion of risk con-

tribution is crucial for doing so. Determining risk contributions means to apportion the

economic capital of a portfolio onto the assets in a way preserving the differences in their

riskiness. We show that there is only one definition for the risk contributions which is suit-

able for performance measurement, namely as derivative of the underlying risk measure

in direction of the asset weight in question.

Evidently, this rises the question under which conditions risk measures are differentiable.

We will discuss this problem for some popular risk measures: the standard deviation, the

VaR and the shortfall. We will also review for these examples some of the risk contributions

which have been proposed in the literature (cf. [1], [15] or [18]), and examine whether they

are suitable for performance measurement.

The result on the differentiation of the VaR allows us to formulate a variant of the capital

asset pricing model (CAPM) in which the variance-based β’s are replaced by quantile-

based quantities.

This paper is organized as follows: after presenting our portfolio model in Section 2 we

introduce our running examples of risk measures in Section 3. Section 4 contains the above-

mentioned result on suitableness for performance measurement (Theorem 4.4). Section 5

gives the results on differentiation, and in Section 6 we discuss the connection to the

Markowitz theory and the CAPM. We conclude in Section 7 with some summarizing

remarks.

In the sequel we will make use of the following notation. For a positive integer d the set

Nd is defined by Nd
def
= {1, . . . , d} . For a vector x ∈ Rd, xi denotes its i-th component.

For x, y ∈ Rd we denote by x′y
def
=
∑d

i=1 xi yi the Euclidean scalar product of x and y. For

i ∈ Nd the vector e(i) ∈ Rd denotes the i-th canonical unit vector, i.e.

e
(i)
j =

{
1, if i = j

0, if i 6= j .
.

2 Background and model

We are going to study a model for the cash flow generated by an investment consisting

of several assets 1, . . . , d ≥ 2. We use the term asset as an abbreviation for “asset or

liability” or the difference of these two. Thus, the cashflow of an asset may be positive

and negative.

Examples for such assets are a risky loan granted by a bank and refinanced with deposits

and a credit derivative on the default of the loan that the bank bought with borrowed

money in order to reduce its risk. For the first asset the expected cash flow should be

positive whereas for the second asset it might be negative.
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Mathematically we describe the cash flow Ci of asset i by its expected profit/loss margin

mi and by (−1) times the deviation of the cash flow from its margin. This means

Ci = mi −Xi(2.1)

where Xi is an integrable random variable with E [ Xi ] = 0. We call Xi the fluctuation

caused by asset i. The cash flow from the investment now is

C(u) =
d∑

i=1

ui Ci =
d∑

i=1

mi ui −
d∑

i=1

ui Xi(2.2)

for an investment portfolio consisting of ui units of asset i, i = 1, . . . , d. The random

variable

Z(u) =
d∑

i=1

ui Xi(2.3)

is the portfolio (cash flow) fluctuation.

In case of a negative cash flow C(u) the investor will go bankrupt unless he has allocated

some capital from his equity in order to prevent insolvency. The amount of capital allo-

cated for this reason is called economic capital . This is the way equity contributes to the

investment (cf. [18] p. 32). Hence the expected return on equity for the investment has

to be calculated as a RORAC by the ratio of the expected cash flow and the economic

capital. This shows that the economic capital is crucial for the performance of the invest-

ment. If it is low, the expected performance will be good but the probability of insolvency

might also be high. If the economic capital is high the investor’s creditors will be happy

but the performance of the investment may be poor.

Thus the fact that there are a lot of suggestions for the definition of the economic capital

is not astonishing. Each proposal has its advantages and disadvantages (cf. the discussions

for risk measures under various aspects in [3], [2] or [20]).

We will distinguish the risk and the economic capital of a portfolio. The risk will be a

quantity measuring the portfolio fluctuation as defined by (2.3) whereas the economic

capital will depend on the portfolio fluctuation and on the profit/loss margins. In other

words, while the risk will tell us only something about the deviations of the portfolio cash

flow from its expected value, the economic capital will also take into account the expected

value itself.

We do not need a formal definition of the notion risk. As seen above, a portfolio is

represented by a vector u = (u1, . . . , ud) ∈ U ⊂ Rd. The ui may be interpreted as weights

or numbers of pieces of the assets. The set U contains the portfolios that are currently

under consideration. A risk measure then is simply a function r : U → R, and r(u) is

the risk of portfolio u. We do not impose any special property on the function r to be a

risk measure, but we will often assume the risk measures to be differentiable functions.

Also, when examining which risk measure to use for a portfolio in practice one might be

well-advised to take care of some or of all the properties discussed in [3].
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We need not define formally the economic capital of a portfolio either. Example 3.2 will

show that the choice r(u)−
∑d

i=1 ui mi for the economic capital is reasonable since with

an appropriate risk measure r the probability of the cash flow to fall short of (−1) times

this quantity will be low.

3 Examples of risk measures

Mapping the riskiness of a set U of portfolios by a single function r : U → R is not a

simple task. Some knowledge about the portfolio is needed. Examples for the necessary

knowledge are worst-case scenarios based on human expertise or statistical models of the

portfolio cash flow which might be built from historical data. We will focus on the following

three examples of risk measures from practice which all need a statistical model of the

cash flow. Note that in these examples from a technical point of view the assumption

E [ Xi ] = 0 is not necessary. Nonetheless, it might be reasonable in an economical context

(cf. Section 2).

Example 3.1 (Standard deviation)

Assume that (X1, . . . , Xd) is a random vector such that var(Xi) < ∞ for each i ∈ Nd. Fix

c > 0. With Z(u) as in (2.3),

r(u)
def
= c

√
var(Z(u)) , u ∈ Rd,(3.1)

defines the usual standard deviation risk measure which is very popular in practice. The

constant c is often chosen as the 95%- or the 99%-quantile of the standard normal distri-

bution, i.e. c = 1.65 and c = 2.33 resp. 2

Example 3.2 (Value at risk)

Let (X1, . . . , Xd) be any random vector in Rd. Fix α ∈ (0, 1) and denote by

Qα(u)
def
= inf{z ∈ R : P [ Z(u) ≤ z ] ≥ α}, u ∈ Rd,(3.2)

the α-quantile of the portfolio fluctuation Z(u), defined by (2.3). Then

r(u)
def
= Qα(u), u ∈ Rd,(3.3)

defines the risk measure “value at risk” (VaR). 2

There does not seem to be any common view in the literature whether for the definition

of VaR one should take the “pure” quantile or the quantile minus some benchmark. In

Definition 4.1 we will use for arbitrary risk measures the expected profit/loss margin as

a benchmark when defining our notion of return. The reason for doing so is the fact that

P [ C(u) < m′u−Qα(u) ] ≤ 1− α ,
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with C(u) being the portfolio cash flow as in (2.2). Hence Qα(u)−m′u is just the amount

of capital to be allocated in order to prevent insolvency with probability α or more.

Example 3.3 (Shortfall)

Fix an integer n ≥ 1 and an α ∈ (0, 1). Assume that (X1, . . . , Xd) is a random vector such

that E [ | Xi |n ] < ∞ for each i ∈ Nd.

Observe that for all u ∈ Rd we have by definition of Qα(u) in (3.2)

P [ Z(u) ≥ Qα(u) ] ≥ 1− α .(3.4)

Hence the risk measure

r(n)(u)
def
= E [ Z(u)n | Z(u) ≥ Qα(u) ] , u ∈ Rd,(3.5)

is well-defined. It corresponds to the shortfall risk measure well-known from literature

(cf. [2] for n = 1 or [20]). In Section 6 we will see that it might be reasonable to use
n
√

r(n)

instead of r(n). 2

In the Markowitz portfolio theory (cf. [21]) the fact that the standard deviation risk

measure has nice differentiation properties is heavily exploited. In Section 5 we will see

that the VaR and shortfall risk measures are differentiable in a rather general context as

well.

From general mathematical analysis it is clear that the derivatives of a function play the

most important role when we study the effects of changing the values of one or more of

its arguments. For the class of homogeneous risk measures this connection is particularly

close as the subsequent proposition shows. We need a slightly more general notion of

homogeneity.

Definition 3.4

(i) A set U ⊂ Rd is homogeneous if for each u ∈ U and t > 0 we have t u ∈ U .

(ii) Let τ be any fixed real number. A function r : U → R is τ -homogeneous if U is

homogeneous and for each u ∈ U and t > 0 we have tτ r(u) = r(t u). 2

Proposition 3.5 tells us in (3.6) that differentiable τ -homogeneous functions can be rep-

resented as a weighted sum of their derivatives in a canonical manner.

Proposition 3.5

Let ∅ 6= U be a homogeneous open set in Rd and r : U → R be a real-valued function. Let

τ ∈ R be fixed.
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a) If r is τ -homogeneous and partially differentiable in ui for some i ∈ Nd then the

derivative ∂r
∂ui

is (τ − 1)-homogeneous.

b) If r is totally differentiable then it is τ -homogeneous if and only if for all u ∈ U

τ r(u) =
d∑

i=1

ui
∂r

∂ui

(u) .(3.6)

c) Assume d ≥ 2. Let r be τ -homogeneous, continuous, and for i = 2, . . . , d par-

tially differentiable in ui with continuous derivatives ∂r
∂u2

, . . . , ∂r
∂ud

. Then on the set

U\
(
{0} × Rd−1

)
the function r is also partially differentiable in u1 with a continuous

derivative and satisfies (3.6).

Proof. We only prove the non-trivial parts b) and c).

ad b) The fact that τ -homogeneity implies (3.6) is well-known (“Euler’s relation”). In

order to see that (3.6) implies τ -homogeneity for r fix u ∈ U and set

φu(t)
def
= r(t u), t > 0 .(3.7)

Then φu is differentiable and

φ′u(t) =
d∑

i=1

ui
∂r

∂ui

(t u), t > 0 .(3.8)

Now, observe that (3.6) with (3.7) and (3.8) implies

φ′u(t) = τ
φu(t)

t
, t > 0 .

This ordinary differential equation in t has a unique solution with initial value φu(1) =

r(u), namely φu(t) = tτ r(u). This completes the proof of b).

ad c) Fix any u ∈ U with u1 6= 0 and define

ζu(t)
def
= r(u1,

u2

t
, . . . ,

ud

t
), t > 0 .

Then we have

ζ ′u(1) = −
d∑

j=2

uj
∂r

∂uj

(u) .(3.9)

Consider now ξu(t)
def
= tτ ζu(t), t > 0. In this case, we have by (3.9)

ξ′u(1) = τ ζu(1) + ζ ′u(1) = τ r(u)−
d∑

j=2

uj
∂r

∂uj

(u) .

The τ -homogeneity implies ξu(t) = r(t u1, u2, . . . , ud) and hence

u−1
1

(
τ r(u)−

d∑
j=2

uj
∂r

∂uj

(u)

)
= u−1

1 ξ′u(1) =
∂r

∂u1

(u) . 2
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4 Risk contributions and differentiable risk measures

Equation (3.6) is appealing because it suggests a natural way to apportion the portfolio

risk to the single assets while simultaneously respecting their weights. There are good

reasons for such an apportionment; see [22] for some of them. The most important might be

risk adjusted performance measurement. In this section we show that careful assignment of

risk contributions of the assets can be useful in optimizing performance measured as ratio

of expected cash flow and economic capital. On the contrary, a thoughtless assignment

may result in rather misleading hints concerning the portfolio management.

As with the notions of risk and economic capital we do not need any formal definition

for risk contribution. Finding meaningful risk contributions corresponds to deciding from

which vector field a = (a1, . . . , ad) : U → Rd most information can be inferred about a

certain function r : U → R, the risk measure. In a differentiable context the answer seems

clear: from the gradient of r.

Nonetheless, examining the problem more closely is instructive. We begin by defining the

return function corresponding to a risk measure seen as an ordinary function.

Definition 4.1

Let ∅ 6= U be a set in Rd and r : U → R be some function on U . Fix any m ∈ Rd.

Then the function g = gr,m : {u ∈ U : r(u) 6= m′u} → R, defined by

g(u)
def
=

m′u

r(u)−m′u
,(4.1)

is called return function for r. 2

As we see the economic capital as a reserve to compensate unexpected losses in the future

it should be discounted with some factor when the portfolio return is calculated. The

factor should depend on the length of the time interval under consideration and the risk-

free interest rate. We don’t care about this factor because we are not primarily interested

in absolute performance but in performance relative to those of other portfolios or assets.

If the economic capital r(u(i))−m′u(i) of portfolios u(i), i = 1, 2, is positive then it is clear

that the performance of u(1) is better than that of u(2) if and only if g(u(1)) > g(u(2)).

But we also allow negative values for the economic capital. This may be reasonable when

considering a portfolio of guarantees or derivatives which are hold in order to reduce

economic capital.

Observe that the case of opposite signs in the denominator and the numerator resp. of

the quotient in (4.1) is unrealistic. On the one hand, the case of a positive numerator and

a negative denominator means that someone gives us a present of a guarantee and even

pays for being allowed to do so. On the other hand, the case of a negative numerator

and a positive denominator means that we are so kind to pay for being allowed to bear

someone else’s risk.
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More interesting is the case where both the denominator and the numerator in (4.1) are

negative. In this case g(u) depicts the profit of a counterparty and should therefore – from

the investor’s point of view – be hold as small as possible.

Keep the meanings of the signs in (4.1) in mind when interpreting the following definition.

It translates the postulate that a risk contribution should give the right signals for portfolio

management into a mathematical formulation.

Definition 4.2

Let ∅ 6= U be a set in Rd and r : U → R be some function on U .

A vector field a = (a1, . . . , ad) : U → Rd is called suitable for performance measurement

with r if it satisfies the following two conditions:

(i) For all m ∈ Rd, u ∈ U with r(u) 6= m′u and i ∈ Nd the inequality

mi r(u) > ai(u) m′u(4.2)

implies that there is an ε > 0 such that for all t ∈ (0, ε) we have

gr,m(−t e(i) + u) < gr,m(u) < gr,m(t e(i) + u) .(4.3)

(ii) For all m ∈ Rd, u ∈ U with r(u) 6= m′u and i ∈ Nd the inequality

mi r(u) < ai(u) m′u(4.4)

implies that there is an ε > 0 such that for all t ∈ (0, ε) we have

gr,m(−t e(i) + u) > gr,m(u) > gr,m(t e(i) + u) .(4.5) 2

Remark 4.3

(i) The quantity ai(u), i ∈ Nd, may be regarded as the risk contribution of one unit or

one piece of asset i or as normalized risk contribution of asset i.

(ii) Evidently, (4.2) is equivalent to

mi (r(u)−m′u) > (ai(u)−mi) m′u ,(4.6)

and similarly for (4.4). Inequality (4.6) indicates the relation between the portfolio

return g(u) and the return mi

ai(u)−mi
of asset i as part of the portfolio which ensures

that the portfolio return will increase when the weight of asset i in the portfolio is

increased.

(iii) We will see in Proposition 4.6 that suitableness for performance measurement as in

definition 4.2 often implies a similar property for subportfolios consisting of more

than one asset.
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The following result shows that for a “smooth” function the only vector field which is

suitable for performance measurement with the function is the gradient of the function.

Theorem 4.4

Let ∅ 6= U ⊂ Rd be an open set and r : U → R be a function that is partially differentiable

in U with continuous derivatives. Let a = (a1, . . . , ad) : U → Rd be a continuous vector

field.

Then a is suitable for performance measurement with r if and only if

ai(u) =
∂r

∂ui

(u), i = 1, . . . , d, u ∈ U .(4.7)

Proof. Observe that for u ∈ U with r(u) 6= m′u, m ∈ Rd, and i = 1, . . . , d we get

∂gr,m

∂ui

(u, a) =(4.8)

(r(u)−m′u)−2

(
mi r(u)− ai(u) m′u +

(
ai(u)− ∂r

∂ui

(u, a)

)
m′u

)
.

If (4.7) is satisfied then the suitableness for performance measurement follows immediately

from (4.8).

For the necessity of (4.7) fix any i ∈ Nd and note that by continuity we only need to show

(4.7) for u ∈ U such that ui 6= 0 and uj 6= 0 for some j 6= i. Now, the proof is simple but

requires some care for several special cases. These cases are:

(i) ai(u) 6= 0, r(u) 6= 0, r(u) 6= ui ai(u),

(ii) ai(u) 6= 0, r(u) 6= 0, r(u) = ui ai(u),

(iii) ai(u) = 0, r(u) 6= 0,

(iv) r(u) = 0, each neighbourhood of u contains some v ∈ U such that r(u) 6= 0,

(v) r(v) = 0 for all v in some neighbourhood of u.

We will only give a proof for case (i) because the proofs for (ii) and (iii) are almost

identical, (iv) follows by continuity and (v) is trivial.

Choose any j ∈ Nd\{i} with uj 6= 0 and define m(t) ∈ Rd by

mi(t)
def
= 1 ,

mj(t)
def
=

t

uj

(
r(u)

ai(u)
− ui

)
, and

ml(t)
def
= 0 for l 6= i, j .
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Then

m(t)′u = t
r(u)

ai(u)
+ (1− t) ui and

mi(t) r(u)− ai(u) m(t)′u = (1− t) (r(u)− ui ai(u)) .

Hence by suitableness and (4.8) we can choose sequences (tk) and (sk) with tk → 1 and

sk → 1 such that for all k ∈ N we have m(sk)
′u 6= r(u) 6= m(tk)

′u as well as

(1− tk) (r(u)− ui ai(u)) +

(
ai(u)− ∂r

∂ui

(u)

)(
tk

r(u)

ai(u)
+ (1− tk) ui

)
≥ 0 and

(1− sk) (r(u)− ui ai(u)) +

(
ai(u)− ∂r

∂ui

(u)

)(
sk

r(u)

ai(u)
+ (1− sk) ui

)
≤ 0 .

Now k →∞ yields (4.7). 2

In [8] (sec. 5) the author shows by arguments from game theory that in case of a 1-

homogeneous risk measure its gradient is the only “allocation principle” that fulfills some

“coherence” postulates.

By Theorem 4.4 we know that, if a risk measure is smooth, we should use its partial

derivatives as risk contributions of the assets in the portfolio. Otherwise we run the risk

of receiving misleading informations about the profitability of the assets. Let us review

the concept of marginal risk, known from literature, under this point of view.

Example 4.5

Let r : U → R be any risk measure for some portfolio with assets 1, . . . , d. Some authors

(cf. [18] ch. 6 or [15]) suggest the application of the so-called “marginal risk” for deter-

mining the capital required by an individual business or asset. Formally, the marginal risk

ri of asset i, i = 1, . . . , d, is defined by

ri(u)
def
= r(u)− r(u− ui e

(i)), u ∈ Rd ,(4.9)

i.e. by the difference of the portfolio risk with asset i and the portfolio risk without asset

i. Setting for i = 1, . . . , d

ai(u)
def
=

ri(u)

ui

, u ∈ Rd, ui 6= 0 ,(4.10)

creates a vector field a = (a1, . . . , ad) measuring normalized risk contributions of the assets

in the sense of Remark 4.3 (i) (see also [11]).

If r is differentiable then, in general, a will not be identical with the gradient of r. To see

this note that by the mean value theorem for u ∈ Rd there are numbers θi(u) ∈ [0, 1], i =

1, . . . , d, such that

ri(u) = ui
∂r

∂ui

(u− θi(u) ui e
(i)) .(4.11)

By (4.11) and (4.10) in general we have

ai(u) 6= ∂r

∂ui

(u)

11



and hence by Theorem 4.4 a will not be suitable for performance measurement with r.

If r is also 1-homogeneous then by Proposition 3.5 b) it has the nice feature that

r(u) =
d∑

i=1

ui
∂r

∂ui

(u).

Equation (4.11) now reveals that the equality
∑d

i=1 ri(u) = r(u) is unlikely. 2

Observe that Theorem 4.4 suggests a more appropriate way for calculating a meaningful

marginal risk of asset i: simply use the difference quotient

h−1
(
r(u + h e(i))− r(u)

)
≈ ∂r

∂ui

(u)(4.12)

with some suitable small h 6= 0.

The notion of suitableness for performance management is based on the consideration

of single assets. The following proposition says that the gradient of a risk measure also

provides useful information about the profitability of subportfolios consisting of more than

one asset.

For a unit vector ν ∈ Rd (i.e. ν ′ν = 1) denote by ∂φ
∂ν

the derivative

∂φ

∂ν
(u) =

d∑
i=1

νi
∂φ

∂ui

(u)

of the function φ in direction ν.

See Remark 4.3 (ii) for the interpretation of (4.13) and (4.14).

Proposition 4.6

Let ∅ 6= U ⊂ Rd be an open set and r : U → R any function which is partially differentiable

in U with continuous derivatives. Let ν ∈ Rd be an arbitrary unit vector.

(i) For all m ∈ Rd, u ∈ U with r(u) 6= m′u and

m′ν r(u) > m′u
∂r

∂ν
(u)(4.13)

there is an ε > 0 such that the mapping

t 7→ gr,m(u + t ν), (−ε, ε) → R

is strictly increasing.

(ii) For all m ∈ Rd, u ∈ U with r(u) 6= m′u and

m′ν r(u) < m′u
∂r

∂ν
(u)(4.14)

there is an ε > 0 such that the mapping

t 7→ gr,m(u + t ν), (−ε, ε) → R

is strictly decreasing.

12



Proof. Proposition 4.6 is an immediate consequence of the following equality:

d g

d t
(u + t ν)

∣∣∣∣
t=0

= (r(u)−m′u)−2

(
m′ν r(u)−m′u

∂r

∂ν
(u)

)
. 2

From Definition 4.2 and Theorem 4.4 the reader will expect that the returns of all sub-

portfolios are equal if a portfolio is optimal in the sense of a maximal return gr,m(u).

Formally, this is stated in the following theorem.

Theorem 4.7

Let ∅ 6= U ⊂ Rd be an open set and r : U → R a function that is partially differentiable

in U with continuous derivatives.

Let ∅ 6= I ⊂ Nd, m ∈ Rd and v ∈ U with r(v) 6= m′v be fixed.

Assume that there is an ε > 0 such that for all u ∈ U with | ui − vi |< ε for i ∈ I and

ui = vi for i /∈ I we have r(u) 6= m′u and

gr,m(v) ≥ gr,m(u) .(4.15)

Then

mi r(v) = m′v
∂r

∂ui

(v) , i ∈ I .(4.16)

If, moreover, r is 1-homogeneous and I 6= Nd then we also have(∑
j /∈I

mj vj

)
r(v) = m′v

∑
j /∈I

vj
∂r

∂uj

(v) .(4.17)

Proof.

(4.16) is obvious from equation (4.8) in the proof of Theorem 4.4.

Assume now that r is 1-homogeneous. Then by Proposition 3.5 b)∑
j /∈I

vj
∂r

∂uj

(v) = r(v)−
∑
j∈I

vj
∂r

∂uj

(v) .

Together with (4.16) this implies(∑
j /∈I

mj vj

)
r(v) = r(v) m′v −

∑
j∈I

mj r(v) vj

= m′v
(
r(v)−

∑
j∈I

vj
∂r

∂uj

(v)
)

= m′v
∑
j /∈I

vj
∂r

∂uj

(v) . 2

Remark 4.8

If mi 6= ∂r
∂ui

(v) then (4.16) says that the return

mi

∂r
∂ui

(v)−mi

13



of asset i equals the optimal portfolio return gr,m(v).

Similarly, if
∑

j /∈I mj vj 6=
∑

j /∈I vj
∂r
∂uj

(v) then (4.17) states that the subportfolio return∑
j /∈I mj vj∑

j /∈I vj
∂r
∂uj

(v)−
∑

j /∈I mj vj

equals the portfolio return gr,m(v) as well. 2

5 Examples of risk contributions

In this section we compute the derivatives of the risk measures introduced as examples

in Section 3. The resulting risk contributions have appealing interpretations as predictors

of the asset cash flows given a worst case scenario for the portfolio cash flow. For the

VaR the risk contributions obtained by differentiation differ from the covariance based

contributions that are widely used in practice.

5.1 Covariance based risk contributions

Let us briefly recall the notion best linear predictor. Assume that Y and Z are square-

integrable real random variables on the same probability space. If var(Z) > 0 then we can

compute the projection πZ(z, Y ) of Y −E [ Y ] onto the linear space spanned by Z−E [ Z ]

via

πZ(z, Y ) =
cov(Y, Z)

var(Z)
z, z ∈ R .(5.1)

πZ(z, Y ) is the best linear predictor of Y − E [ Y ] given Z − E [ Z ] = z in the sense that

the random variable πZ(Z−E [ Z ] , Y ) minimizes the L2-distance between Y −E [ Y ] and

the linear space spanned by Z − E [ Z ]. Choosing a value for z corresponds to defining a

worst-case scenario for the portfolio cash flow. We first consider the case z = c
√

var(Z)

in (5.1).

Example 5.1 (Continuation of Example 3.1)

Define U ⊂ Rd by

U
def
=

{
u ∈ Rd | var(Z(u)) > 0

}
(5.2)

and suppose U 6= ∅. Then U is a homogeneous open set. For u ∈ U define the vector field

a = (a1, . . . , ad) : U → Rd by

ai(u)
def
= πZ(u)(r(u), Xi) = c

cov(Xi, Z(u))√
var(Z(u))

, i = 1, . . . , d .(5.3)

Thus ai(u) is the best linear predictor of the cash flow fluctuation of asset i given that

the portfolio fluctuation is just the risk r(u) defined in Example 3.1. In u ∈ U we have

14



for i = 1, . . . , d

2 r(u)
∂r

∂ui

(u) =
∂r2

∂ui

(u)

= c2 ∂

∂ui

(
d∑

j=1

d∑
l=1

uj ul cov(Xj, Xl)

)
= 2 c2 cov(Xi, Z(u))

and hence
∂r

∂ui

(u) = c2 cov(Xi, Z(u))

r(u)
= ai(u) .(5.4)

By Theorem 4.4 a is thus suitable for performance measurement with r. Moreover, since

r is 1-homogeneous we know from Proposition 3.5 b) without computation that

r(u) =
d∑

i=1

ui ai(u), u ∈ U. 2

Another appealing choice for the value of z in (5.1) is z = Qα(u). This leads us to the

situation of Example 3.2.

Example 5.2 (Continuation of Example 3.2)

Define again U ⊂ Rd by (5.2) and suppose U 6= ∅. For u ∈ U define analogously to

Example 5.1 the vector field a = (a1, . . . , ad) : U → Rd by

ai(u)
def
= πZ(u)(r(u), Xi) =

cov(Xi, Z(u))

var(Z(u))
Qα(u) , i = 1, . . . , d .(5.5)

Then we have again r(u) =
∑d

i=1 ui ai(u), u ∈ U . This method for determining the con-

tributions of the assets is proposed for instance in Section 6.1 of [19] or in Appendix A13

of [7]. We will see in the next subsection that in general we have ai 6= ∂r
∂ui

, and hence a is

not suitable for performance measurement with r. 2

Observe that in case of an elliptically (and in particular of a normally) distributed random

vector (X1, . . . , Xd) equations (5.3) and (5.5) lead to the same result when the constant c is

chosen as the α-quantile of the standardized univariate marginal distribution (Theorem 1

in [10]). If the distribution of (X1, . . . , Xd) is not an elliptical distribution, the ai and the
∂r
∂ui

in Example 5.2 can considerably differ. In particular, this may be the case in credit

portfolios (cf. [15], Sec. 1.1.2).

5.2 Quantile based risk contributions

In this subsection we will compute the risk contributions that are associated with the

VaR risk measure from Example 3.2 via differentiation. However, in general the quantile

function Qα(u) from (3.2) will not be differentiable in u. In order to guarantee that
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differentiation is possible we have to impose some technical assumptions on the joint

distribution of the fluctuation vector (X1, . . . , Xd). The most important one among these

could roughly stated as: at least one among the fluctuations Xi must have a continuous

density.

Assumption (S)

For fixed α ∈ (0, 1), we say that an Rd-valued random vector (X1, . . . , Xd) satisfies As-

sumption (S) if d ≥ 2 and the conditional distribution of X1 given (X2, . . . , Xd) has a

density

φ : R× Rd−1 → [0,∞), (t, x2, . . . , xd) 7→ φ(t, x2, . . . , xd)

which satisfies the following four conditions:

(i) For fixed x2, . . . , xd the function t 7→ φ(t, x2, . . . , xd) is continuous in t.

(ii) The mapping

(t, u) 7→ E
[
φ
(
u−1

1

(
t−
∑d

j=2 uj Xj

)
, X2, . . . , Xd

) ]
, R×R\{0}×Rd−1 → [0,∞)

is finite-valued and continuous.

(iii) For each u ∈ R\{0} × Rd−1

0 < E
[
φ
(
u−1

1

(
Qα(u)−

∑d
j=2 uj Xj

)
, X2, . . . , Xd

) ]
,

with Qα(u) defined by (3.2).

(iv) For each i = 2, . . . , d the mapping

(t, u) 7→ E
[
Xi φ

(
u−1

1

(
t−
∑d

j=2 uj Xj

)
, X2, . . . , Xd

) ]
, R× R\{0} × Rd−1 → R

is finite-valued and continuous. 2

Note that (i) in general implies neither (ii) nor (iv). Furthermore, (ii) and (iv) may be valid

even if the components of the random vector (X1, . . . , Xd) do not have finite expectations.

Before turning to the next result let us just present some situations in which Assumption

(S) is satisfied:

1) (X1, . . . , Xd) is normally distributed and its covariance matrix has full rank.

2) (X1, . . . , Xd) and φ satisfy (i) and (iii) resp. and for each (s, v) ∈ R×R\{0}×Rd−1

there is some neighbourhood V such that the random fields(
φ
(
u−1

1 (t−
∑d

j=2 uj Xj), X2, . . . , Xd

))
(t,u)∈V

and for i = 2, . . . , d(
Xi φ

(
u−1

1 (t−
∑d

j=2 uj Xj), X2, . . . , Xd

))
(t,u)∈V

are uniformly integrable.
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3) E [ | Xi | ] < ∞, i = 2, . . . , d, and φ is bounded and and satisfies (i) and (iii). .

4) E [ | Xi | ] < ∞, i = 2, . . . , d. X1 and (X2, . . . , Xd) are independent. X1 has a con-

tinuous density f such that

0 < E
[
f
(
u−1

1

(
Qα(u)−

∑d
j=2 uj Xj

)) ]
.

5) There is a finite set M ⊂ Rd−1 such that

P [ (X2, . . . , Xd) ∈ M ] = 1 ,

and (i) and (iii) are satisfied.

Note that 3) is a special case of 2) and that 4) and 5) resp. are special cases of 3). 4)

shows that Qα(u) can be forced to be differentiable by disturbing the portfolio cash flow

fluctuation Z(u) with some small independent noise.

Lemma 5.3

For some given α ∈ (0, 1), let (X1, . . . , Xd) be an Rd-valued random vector satisfying

Assumption (S). Set U
def
= R\{0} × Rd−1 and define the random field (Z(u))u∈U by

Z(u)
def
=

d∑
i=1

ui Xi , u ∈ U .

Then the function Qα : U → R with

Qα(u)
def
= inf{z ∈ R : P [ Z(u) ≤ z ] ≥ α}, u ∈ U ,

is partially differentiable in U with continuous derivatives

∂Qα

∂u1

(u) =(5.6)

u−1
1

Qα(u)−
E
[ (∑d

j=2 uj Xj

)
φ
(
u−1

1 (Qα(u)−
∑d

j=2 uj Xj), X2, . . . , Xd

) ]
E
[
φ
(
u−1

1 (Qα(u)−
∑d

j=2 uj Xj), X2, . . . , Xd

) ]


and

∂Qα

∂ui

(u) =
E
[
Xi φ

(
u−1

1 (Qα(u)−
∑d

j=2 uj Xj), X2, . . . , Xd

) ]
E
[
φ
(
u−1

1 (Qα(u)−
∑d

j=2 uj Xj), X2, . . . , Xd

) ] , i = 2, . . . , d.(5.7)

Proof. We only need to give the proof for u1 > 0 since we then obtain the formulas for

u1 < 0 by considering the random vector (X ′
1, . . . , X

′
d) = (−X1, X2, . . . , Xd).

Thus, define F : R× (0,∞)× Rd−1 → R by

F (y, u)
def
= P [ Z(u) ≤ y ] .(5.8)
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By setting

G(y, u, x2, . . . , xd)
def
=

u−1
1 (y −

∑d
j=2 uj xj)∫

−∞

φ(t, x2, . . . , xd) dt

= P [ Z(u) ≤ y | X2 = x2, . . . , Xd = xd ]

we can write F (y, u) as

F (y, u) = E [ G(y, u, X2, . . . , Xd) ] .(5.9)

In a first step we want to show that F (y, u) is continuously differentiable and that its

derivatives may be computed by changing the order of integration and differentiation on

the right-hand side of (5.9). On this behalf we evoke Theorem A.(9.1) from [9] and verify

its conditions (i) – (iv). (i) is clear as F (y, u) is a probability.

Observe that the function G is partially differentiable in y and ui, i = 1, . . . , d. For the

derivatives we calculate

∂G

∂y
(y, u, x2, . . . , xd) = 1

u1
φ
(
u−1

1 (y −
∑d

j=2 uj xj), x2, . . . , xd

)
,

∂G

∂u1

(y, u, x2, . . . , xd) = −u−2
1

(
y −

∑d
j=2 uj xj

)
φ
(
u−1

1 (y −
∑d

j=2 uj xj), x2, . . . , xd

)
, and

∂G

∂ui

(y, u, x2, . . . , xd) = − xi

u1
φ
(
u−1

1 (y −
∑d

j=2 uj xj), x2, . . . , xd

)
, i = 2, . . . , d .

By Assumption (S) (i) for fixed x2, . . . , xd these derivatives are continuous in (y, u), giving

(ii) of Theorem A.(9.1). Moreover, by Assumption (S) (ii) and (iv) the expressions

E

[
∂G

∂ui

(y, u, X2, . . . , Xd)

]
, i = 1, . . . , d , and E

[
∂G

∂y
(y, u, X2, . . . , Xd)

]
are also continuous in (y, u). This is (iii) of Theorem A.(9.1). Condition (iv) of A.(9.1)

follows with some computations from the definition of conditional densities. Hence we

know that F (y, u) is continuously partially differentiable with

∂F

∂ui

(y, u) = E

[
∂G

∂ui

(y, u, X2, . . . , Xd)

]
, i = 1, . . . , d , and(5.10)

∂F

∂y
(y, u) = E

[
∂G

∂y
(y, u, X2, . . . , Xd)

]
.(5.11)

(5.11) implies in particular P [ Z(u) = y ] = 0 for all y ∈ R and u ∈ (0,∞)× Rd−1. From

this we obtain

F (Qα(u), u) = α

for all u ∈ (0,∞)×Rd−1. Hence by Assumption (S) (iii) and the theorem of implicit func-

tions we may conclude that Qα(u) is continuously partially differentiable. Its derivatives
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can be deduced from (5.10) and (5.11) by the formula

∂Qα

∂ui

(u) = −
(

∂F

∂y
(Qα(u), u)

)−1
∂F

∂ui

(Qα(u), u), i = 1, . . . , d . 2

Remark 5.4

Equations (5.6) and (5.7) allow an interesting interpretation. Fix u ∈ R\{0}×Rd and set

for z ∈ R
gu(z)

def
= E

[
φ
(
u−1

1 (z −
∑d

j=2 uj Xj), X2, . . . , Xd

) ]
.

By (5.11) we know that gu

|u1| is a continuous density of the random variable Z(u). It is not

hard to see that then for i = 2, . . . , d the functions h
(i)
u with

h(i)
u (z)

def
=

{
0, if gu(z) = 0

gu(z)−1E
[
Xi φ

(
u−1

1 (z −
∑d

j=2 uj Xj), X2, . . . , Xd

) ]
, otherwise,

provide versions of E [ Xi | Z(u) = · ], the conditional expectation of Xi given Z(u). Sim-

ilarly we have

E [ X1 | Z(u) = z ] = u−1
1

(
z −

∑d
j=2 uj h

(j)
u (z)

)
.

Hence Lemma 5.3 says nothing else than
∂Qα

∂ui

(u) = E [ Xi | Z(u) = Qα(u) ] , i = 1, . . . , d .(5.12) 2

Equation (5.12) has been presented in [13] without examination of the question whether

Qα is differentiable and in [12] for the case of (X1, . . . , Xd) with a joint density.

Recall that the conditional expectation of Xi given Z(u) essentially may be seen as the

best predictor of Xi by elements of the space M
def
= {f(Z(u)) | f : R → R measurable} .

As mentioned above the best linear predictor of Xi given Z(u) is the best predictor of Xi

by elements of the space {m Z(u) | m ∈ R} ⊂ M .

We are now in a position to discuss Examples 3.2 and 5.2 again.

Example 5.5 (Continuation of Example 3.2)

By Lemma 5.3 under Assumption (S) for i = 1, . . . , d the mappings bi : R\{0}×Rd−1 → R
with

bi(u)
def
=

∂r

∂ui

(u) =
∂Qα

∂ui

(u)(5.13)

are well-defined. They provide a vector field of risk contributions b = (b1, . . . , bd) which

by Proposition 3.5 b) satisfies

r(u) =
d∑

i=1

ui bi(u), u ∈ U ,

and is suitable for performance measurement with r by Theorem 4.4. By equation (5.12)

we see that in general the vector fields a from Example 5.2 and b are not identical unless

the random vector (X1, . . . , Xd) is elliptically distributed (cf. [10] Sec. 3.3). 2
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5.3 Shortfall based risk contributions

As in the previous subsection for the quantile based risk we calculate here the risk contribu-

tions which are associated to the shortfall based risk (cf. Example 3.3) via differentiation.

Again there is the problem that the quantile function in general might not be differen-

tiable. Nevertheless, the following lemma and its corollary show that we may differentiate

the shortfall under almost the same assumptions as those for the quantile.

For any set A define I(A, a) = I(A) by I(A, a)
def
=

{
1, if a ∈ A

0, if a /∈ A .

Lemma 5.6

Let (X1, . . . , Xd) and α be as in Lemma 5.3 and assume

E [ | Xi |n ] < ∞, i = 1, . . . , d,

for some integer n ≥ 1. Define U , Z(u) and Qα(u) as in Lemma 5.3 and set

Tα,n(u)
def
= E [ Z(u)n | Z(u) ≥ Qα(u) ] , u ∈ U .

Then Tα,n on U is continuous and partially differentiable in ui, i = 1, . . . , d, with contin-

uous derivatives

∂Tα,n

∂ui

(u) = n E
[
Xi Z(u)n−1 | Z(u) ≥ Qα(u)

]
, i = 1, . . . , d .(5.14)

Proof. We may again assume u1 > 0. Note first that under Assumption (S) for each

u ∈ U the distribution of Z(u) is continuous and thus in particular we have

P [ Z(u) ≥ Qα(u) ] = 1− α > 0 .

By Lemma 5.3 the quantile function Qα is continuous. Hence by the representation

Tα,n(u) = Qα(u)n + (1− α)−1E [ (Z(u)n −Qα(u)n) I(Z(u) ≥ Qα(u)) ]

and by E [ | Xi |n ] < ∞, i = 1, . . . , d, the function Tα,n is continuous, too. Therefore, by

Proposition 3.5 c), we only need to show (5.14) and the continuity of the derivatives for

i = 2, . . . , d.

Define H(y, u)
def
= P [ Z(u) > y ] and note that

n

∞∫
y

tn−1 H(t, u) dt + yn P [ Z(u) > y ] = E [ Z(u)n I(Z(u) > y) ] .(5.15)

Moreover, H(y, u) = 1 − F (y, u) with F (y, u) defined as in (5.8). Hence we know from

the proof of Lemma 5.3 that H(y, u) is continuous and partially differentiable in ui for

i = 2, . . . , d, with continuous derivatives

∂H

∂ui

(y, u) = u−1
1 E

[
Xi φ

(
u−1

1

(
y −

∑d
j=2 uj Xj

)
, X2, . . . , Xd

) ]
.(5.16)
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This representation for ∂H
∂ui

implies for i = 2, . . . , d

∞∫
y

tn−1 ∂H

∂ui

(t, u) dt

= E
[
Xi

∞∫
u−1
1 (y−

∑d
j=2 uj Xj)

(
t u1 +

d∑
j=2

uj Xj

)n−1

φ(t,X2, . . . , Xd) dt
]

(5.17)

= E
[
Xi Z(u)n−1 I(Z(u) ≥ y)

]
.

Equality (5.17) shows that the mapping

(y, u) 7→
∞∫

y

tn−1 ∂H

∂ui

(t, u) dt = E
[
Xi Z(u)n−1 I(Z(u) ≥ y)

]
is jointly continuous in y and u. By (5.15) and (5.16), using Assumption (S) and the

finiteness of the n-th absolute moment of Xi for i = 1, . . . , d, one now can verify that

the conditions of Theorem A.(9.1) in [9] are satisfied. Hence we may change the order of

integration and differentiation in ∂
∂ui

∫∞
y

tn−1 H(t, u) dt . This yields

∂

∂ui

∞∫
y

tn−1 H(t, u) dt = E
[
Xi Z(u)n−1 I(Z(u) ≥ y)

]
, i = 2, . . . , d .(5.18)

By finiteness of
∫∞

y
tn−1 H(t, u) dt and continuity of t 7→ H(t, u) we have

∂

∂y

∞∫
y

tn−1 H(t, u) dt = −yn−1 P [ Z(u) ≥ y ] .(5.19)

Since ∂Qα

∂ui
exists and is continuous by Lemma 5.3, from (5.15),(5.18) and (5.19) we deduce

for i = 2, . . . , d that

∂Tα,n

∂ui

(u) =
n

1− α

(
− (1− α) Qα(u)n−1 ∂Qα

∂ui

(u) + E
[
Xi Z(u)n−1 I(Z(u) ≥ Qα(u))

])
+ n Qα(u)n−1 ∂Qα

∂ui

(u)

= n E
[
Xi Z(u)n−1 | Z(u) ≥ Qα(u)

]
.

This is the desired result. 2

Corollary 5.7

Let (X1, . . . , Xd), α and n be as in Lemma 5.6. Define also Z(u), Qα(u) and Tα,n as in

Lemma 5.6 and set

Un
def
=

{
R\{0} × Rd−1, n = 1(

R\{0} × Rd−1
)
\{u : Tα,n = 0}, n ≥ 2 .
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Then the function Sα,n : Un → R, defined by

Sα,n
def
= n

√
Tα,n(u) , u ∈ Un ,

is continuous on Un and partially differentiable in ui, i = 1, . . . , d, with continuous deriva-

tives
∂Sα,n

∂ui

(u) = (Sα,n(u))−(n−1) E
[
Xi Z(u)n−1 | Z(u) ≥ Qα(u)

]
.(5.20)

Proof. Obvious from Lemma 5.6. 2

Lemma 5.6 leads to the proposal in [19], Section 7, for the shortfall risk contributions in

case n = 1.

Example 5.8 (Continuation of Example 3.3)

By Lemma 5.6 under Assumption (S) for i = 1, . . . , d the mappings a
(n)
i : R\{0}×Rd−1 →

R with

a
(n)
i (u)

def
=

∂r(n)

∂ui

(u) =
∂Tα,n

∂ui

(u)(5.21)

are well-defined. They provide a vector field of risk contributions a(n) = (a
(n)
1 , . . . , a

(n)
d )

which by Proposition 3.5 b) satisfies

n r(n)(u) =
d∑

i=1

ui a
(n)
i (u), u ∈ U ,

and is suitable for performance measurement with r by Theorem 4.4. Moreover, the a
(n)
i (u)

can also be calculated via

a
(n)
i (u) = n E

[
Xi Z(u)n−1 | Z(u) ≥ Qα(u)

]
.(5.22) 2

Observe that, if Assumption (S) does not hold, in the cases of quantile and shortfall based

risk measures we can define risk contributions by (5.12) and (5.22) resp. The contributions

defined in this way might also have a good chance to be suitable with their corresponding

risk measures.

6 A mean-quantile CAPM

Consider assets 0, 1, . . . , d. Assets 1, . . . , d are risky and earn margins mi > 0, i = 1, . . . , d,

plus the risk-free interest rate. Asset 0 is risk-free and earns exactly the risk-free rate (i.e.

m0 = 0). We regard portfolios (u0, u1, . . . , ud) which are weighted compositions of the

assets 0, 1, . . . , d. The weight u0 ∈ R of asset 0 is arbitrary, i.e. the investor may lend or

borrow at the risk-free rate, whereas the weights ui of assets 1, . . . , d are non-negative,

i.e. short selling with these assets is not allowed.
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The classical Markowitz portfolio theory (cf. [21]) tells us how to find optimal portfo-

lio weights for a given risk level R. The risk in this theory is measured with the vari-

ance of the portfolio return. The optimal weight vector (u0, u1, . . . , ud) maximizes the

expected portfolio return
∑d

i=1 mi ui exceeding the risk-free rate under the restrictions

r(u0, u1, . . . , ud) = R and
∑d

i=0 ui = 1.

For the classical case, the Tobin separation theorem says that there are weights vi ∈
[0, 1], i = 1, . . . , d, with

∑d
i=1 vi = 1 such that for each fixed risk value R the optimal

portfolio can be represented as (1− h, h v1, . . . , h vd) with h depending on R. The vector

(v1, . . . , vd) can be determined by maximizing the Sharpe ratio, i.e. the quotient of the

portfolio return minus risk-free rate and the standard deviation of the portfolio return.

In the sequel, we study the connection between separation and Sharpe ratio in the context

of more general risk measures.

Definition 6.1

Let r be a function R × [0,∞)d → R. We say that a vector (v1, . . . , vd) ∈ [0, 1]d with∑d
i=1 vi = 1 has the two fund separation property for r if for each C > 0 and R > 0 there

is an h > 0 such that

R = r(C − h, h v1, . . . , h vd) and(6.1)

h
d∑

i=1

mi vi = sup

{
d∑

i=1

mi ui

∣∣∣ u0 ∈ R, ui ∈ [0,∞), i = 1, . . . , d,(6.2)

d∑
i=0

ui = C, r(u0, u1, . . . , ud) = R

}
. 2

Property (6.1) means that an investor whatever be his initial wealth C, can reach ex-

actly the risk level R by apportioning his wealth on the risk-free asset and the portfolio

(v1, . . . , vd) of assets 1, . . . , d only. Note that asset 0 is risk-free and does not contribute to

the excess return on the portfolio over the risk-free rate but may influence the portfolio

risk. This could be regarded as a leverage effect. Examples for risk measures exhibiting

this behaviour are the MLPM’s (mean-lower partial moments) with arbitrary target rates

which are studied in [14]. (6.2) is just the optimality from the separation theorem.

In general, characterization of the two fund separating vectors from Definition 6.1 seems

difficult. However, in situations as that with the VaR risk measure from Example 3.2,

a characterization analogous to that with the Sharpe ratio is possible. The proof of the

following proposition is easy and therefore is omitted.

Proposition 6.2

Let r : R× [0,∞)d → R be given by r(u0, u1, . . . , ud) = ρ(u1, . . . , ud) , where ρ : [0,∞)d →
R is τ -homogeneous for some τ > 0. Let (v1, . . . , vd) ∈ [0,∞)d be a vector with

∑d
i=1 vi = 1

and ρ(v1, . . . , vd) > 0.
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Then (v1, . . . , vd) is two fund separating for r if and only if

(
∑d

i=1 mi vi)
τ

ρ(v1, . . . , vd)
= sup

{(
∑d

i=1 mi ui)
τ

ρ(u1, . . . , ud)

∣∣∣ ui ∈ [0,∞), i = 1, . . . , d,(6.3)

ρ(u1, . . . , ud) > 0
}

. 2

Differentiating the left-hand side of (6.3) we obtain a linear relationship between the asset

margins and the margin of the two fund separating portfolio.

Corollary 6.3

Let r, ρ and τ be as in Proposition 6.2. Let (v1, . . . , vd) ∈ (0, 1)d with r? def
= ρ(v1, . . . , vd) > 0

have the two fund separation property and assume that ρ is differentiable in the point

(v1, . . . , vd). Set m? def
=
∑d

i=1 mi vi.

Then we have

mi = m? (τ r?)−1 ∂ρ

∂ui

(v1, . . . , vd), i = 1, . . . , d .(6.4) 2

Remark 6.4

(i) If ρ is continuous and positive on the compact set {(u1, . . . , ud) ∈ [0,∞)d |
∑d

i=1 ui =

1} then Proposition 6.2 implies the existence of a two fund separating portfolio.

(ii) When (v1, . . . , vd) denotes a market portfolio in the sense of the CAPM, the number

m? is the excess return on the market over the risk-free interest rate. (6.4) then may

be considered as generalized CAPM-equation (cf. (9.11) in [21]) since it expresses

the excess return on asset i over the risk-free rate as the excess return on the market

times the sensitivity of asset i to the market.

(iii) Given a statistical portfolio model as in Section 3 which satisfies Assumption (S)

and appropriate moment conditions, corollary 6.3 implies Theorem 4 in [6] and

mean-quantile CAPM-formulae.

(iv) When ρ(v1, . . . , vd) − (
∑d

i=1 mi vi)
τ is positive, the two fund separating portfolio

(v1, . . . , vd) can also be characterized by

(v1, . . . , vd) =(6.5)

arg sup
{ ∑d

i=1 mi ui

τ
√

ρ(u1, . . . , ud)−
∑d

i=1 mi ui

∣∣∣ ui ∈ [0,∞), i = 1, . . . , d,

ρ(u1, . . . , ud) > (
d∑

i=1

mi ui)
τ
}

.

This gives the connection between the performance considerations from Section 4

and the Markowitz-like point of view we take in this section. Moreover, we see

that when measuring performance in a risk-adjusted manner one should use a 1-

homogeneous risk measure. 2
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7 Concluding remark

This paper contains bad news and good news. The bad news are that some commonly

recommended methods of allocating risk to subportfolios or business lines are suspicious

of rendering misleading information (Examples 4.5 and 5.2). The good news say that there

is a right way to do the allocation (Theorem 4.4). This way seems practicable even for

more sophisticated risk measures as the VaR (Lemma 5.3 and (4.12)). Recent simulation

results in [13] point out that direct estimation of the conditional mean in (5.12) seems

feasible.
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[11] C. Finger. Risk-return Reporting. RiskMetrics Group, CreditMetrics Monitor, April 1999.
http://www.creditmetrics.com/creditdocs.html.

[12] C. Gouriéroux, J. P. Laurent, and O. Scaillet. Sensitivity analysis of Values at Risk. Dis-
cussion paper, June 1999.
http://www.econ.ucl.ac.be/IRES/CSSSP/home pa pers/scaillet/scaill.htm.

25

http://www.bis.org/publ/
http://www.bis.org/publ/
http://www.csfb.com/creditrisk/
http://www.risklab.ch/Papers.html
http://www.creditmetrics.com/creditdocs.html
http://www.econ.ucl.ac.be/IRES/CSSSP/home_pa_pers/scaillet/scaill.htm


[13] W. Hallerbach. Decomposing portfolio value-at-risk: A general analysis. Discussion paper
TI 99-034/2, Tinbergen Institute Rotterdam, 29 pp., 1999.
http://www.fee.uva.nl/Bieb/TIDPs/TIDP99nr.htm.

[14] W. Harlow and R. Rao. Asset pricing in a generalized mean-lower partial moment frame-
work: theory and evidence. Journal of Financial and Quantitative Analysis, 24:285–311,
1989.

[15] J.P. Morgan & Co. Incorporated. CreditMetricsTM – Technical Document, 1997.
http://www.creditmetrics.com/creditdocs.html.

[16] KMV Corporation. Portfolio Manager? http://www.kmv.com/.

[17] H. Markowitz. Portfolio selection. Journal of Finance, 7:77–91, 1952.

[18] C. Matten. Managing Bank Capital. Wiley, Chichester, 1996.

[19] L. Overbeck and G. Stahl. Stochastische Modelle im Risikomanagement des Kreditport-
folios. In A. Oehler, editor, Credit Risk und Value-at-Risk Alternativen, pages 77–110.
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