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Abstract

Risk analysis, economic capital allocation and performance evaluation are crucial steps in the
process of enterprise-wide risk management. Capital-at-Risk (CaR) plays a central role since it
determines the amount of economic capital that is required to support firm-wide consolidated
risks and it is the key ingredient of risk-adjusted return (RAROC) measures. The existing
literature, however, offers various definitions of RAROC. In addition most approaches assume a
joint-elliptical world. Especially in the context of credit risk, where loss distributions are skewed,
this is not realistic. Moreover this leads to biases in estimating the risk contributions of portfolio
components and in determining the subsequent allocation of economic capital.

In this paper we study capital allocation and risk-adjusted performance measurement
(RAPM) in a coherent and non-parametric framework. Our results can readily be used in a
simulation context and serve as a benchmark to evaluate the corresponding CreditMetrics,
CreditRisk+ and KMV approaches. We first discuss the allocation of economic capital over
business units or portfolio components according to their risk contributions. We then show that
the relevant RAROC measure, based on relative risk-return contributions, actually emerges from
the solution to a suitable CaR-constrained portfolio optimization problem. This implied RAROC
is important as a decision measure for shaping portfolio composition ex ante facto; as a
performance measure it serves to evaluate and to attribute portfolio performance ex post facto.
However, different decision problems imply different RAROC measures. The relevant definition
of a RAROC measure depends on the specific decision context at hand and, consequently, no
generally valid recipes can exist. Hence we propose a unified approach to portfolio optimization,
economic capital allocation and RAPM.

In practice, there are restrictions on portfolio revisions and flexibility in portfolio
composition is limited. Attention thus shifts from fully-fledged portfolio optimization to portfolio
enhancement. In this context our results can be used (i) to estimate the risk-return trade-off that
is implied by a given sub-optimal portfolio, (ii) to gauge the degree of its sub-optimality, and (iii)
to improve the portfolio in accordance with the estimated risk-return trade-off.

Key words: Capital-at-Risk, risk-adjusted performance evaluation, RAROC, portfolio
optimization, non-parametric methods

JEL classification: C13, C14, C15, D81, G11, G20
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1. Introduction

Market risks, credit risk and operational risks are the main risk categories faced by financial
institutions. To an increasing degree the allowed exposures from these risks are subject to
regulation (notably by the “Basle II” proposals). Under the denominator of “Enterprise-Wide
Risk Management” (EWRM) these risks are analyzed in a coherent way. This is a challenging
task.1 

Financial institutions hold reserves and provisions in order to cover expected losses
incurred in the normal course of business. In order to provide a cushion against unexpected
losses they must hold some amount of capital.  The minimum amount of capital required by
BIS regulations is termed regulatory capital. Financial firms also specify internal capital
requirements in order to ensure solvency. The minimum amount of internal capital is termed
economic capital. Defined as a one-sided confidence interval on potential portfolio losses
over a specific horizon, Value-at-Risk (VaR) serves the role of setting the capital requirement
for market risks. Because of the frequent portfolio revisions the VaR horizon is chosen fairly
short, ranging from one to twenty trading days. In the context of credit risk VaR is often
denoted as Credit-VaR; in the general context of enterprise-wide risk the VaR measure is
termed Capital-at-Risk (CaR). These metrics serve to set the amount of economic capital.
Compared to VaR the focus is more on solvency than on liquidity so that the horizon is
longer, typically one year.2 Also, since the continuity of the firm is at stake the confidence
level is set fairly high, typically 99% or even 99.5%.3 For simplicity we henceforth gather the
concepts of VaR, Credit-VaR and CaR under the generic term of CaR.

Probabilistic analyses of potential portfolio losses date back more than a century. An
analysis of CaR avant la lettre is provided by Edgeworth [1888] who invoked the central
limit theorem and used quantiles of the normal distribution to analyze potential bank losses
and to evaluate bank solvency. Motivated by the BIS’ rules and the EU’s Capital Adequacy
Directives, the release of RiskMetrics™ by J.P.Morgan [1994] in October 1994 spurred
the development of the VaR concept. Nowadays a wide variety of analytical and simulation-
based estimation methods is available for market risk and credit risk analysis.4,5

Extending the VaR concept from a trading environment to a credit risk – and more
general, an EWRM – context raises some interesting problems. EWRM entails several steps,
viz. risk analysis, portfolio optimization, economic capital allocation, and risk-adjusted
performance (RAP) evaluation. In the first step the market and credit risks must be analyzed
in a consistent way, recognizing the interdependency of these risks. The parametric
assumption of symmetrical (viz. elliptical) distributions may be analytically convenient in CaR
analyses6, but is not appropriate. The decomposition of portfolio CaR with respect to

                                                
1 See for example Bookstaber [1997] and Cumming & Hirtle [2001].
2 Horizon issues are discussed in Kupiec [1999] and Shen [2001].
3 Such high confidence level renders model validation by backtesting virtually impossible, especially
when combined with a long horizon. See also footnote 2.
4 The choice for a specific estimation method depends on both the degree of non-linearity of the
instruments comprised in the portfolio and the willingness to make restrictive assumptions on the
underlying statistical distributions. See for example Duffie & Pan [1997] and Jorion [2000] for an
overview.
5 Kupiec [2001] discusses estimating Credit-VaR vis à vis  different applications.
6 See for example Saita [1999], Stoughton & Zechner [1999,2000] and Dowd [1998,1999,2000] who assume
normality throughout. In response, Tasche & Tibiletti [2001] relax this assumption by investigating
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individual activities is then troublesome, and may distort the allocation of economic capital
over portfolio components, portfolio optimization, and the RAP analysis. In CreditSuisse’s
CreditRisk+ [1997], for example, the allocation is performed proportionally to standard
deviation and this approach breaks down when the implied ellipticity assumption is violated.7

In KMV’s [1997] portfolio optimization procedure a conventional Sharpe [1966,1994] ratio
is used, which is also biased when returns are not elliptical. Also the performance
measurement on the basis of conventional RAROC measures is troublesome. Firstly because
these measures may be based on a unsuitably parametrically estimated CaR. Secondly
because throughout the literature RAROC measures are defined and not derived.8 Hence
there exists substantial ambiguity in ex cathedra proposed RAP measures. We here argue
that the relevant risk-adjusted performance measure is implied by the underlying optimization
problem. Hence the relevant definition of a RAROC measure depends on the specific
decision context at hand. Consequently no generally valid recipes can exist.

In this paper we study portfolio optimization, capital allocation and risk-adjusted performance
measurement (RAPM) in a coherent and non-parametric framework. Our results can readily be
used in a simulation context and serve as a benchmark to evaluate the corresponding
CreditMetrics, CreditRisk+ and KMV approaches.9

The outline of the paper is as follows. In section 2 we briefly review the concepts of
economic capital, CaR, and RAROC, and we discuss the allocation of economic capital over
business units or portfolio components according to their risk contributions. In section 3 we
analyze portfolio optimality and RAPM in some simplified decision contexts. We show that
the implied portfolio optimality conditions guide the choice of the appropriate RAROC
metric. More specifically we show that the relevant RAROC measure, based on relative risk-
return contributions, actually emerges from the solution to the suitable CaR-constrained
portfolio optimization problem. This implied RAROC is important as a decision measure for
shaping portfolio composition ex ante facto; as a performance measure it serves to evaluate
and to attribute portfolio performance ex post facto. Hence we propose a unified approach
to portfolio optimization, economic capital allocation and RAPM. In practice, there are
restrictions on portfolio revisions and flexibility in portfolio composition is limited. Attention
thus shifts from fully-fledged portfolio optimization to portfolio enhancement. In this context
our results can be used (i) to estimate the risk-return trade-off that is implied by a given sub-
optimal portfolio, (ii) to gauge the degree of its sub-optimality, and (iii) to improve the
portfolio in accordance with the estimated risk-return trade-off. Section 4 concludes the
paper and presents lines for further research.

                                                                                                                                            

suitable approximations. In Hallerbach [1999] we also present a non-parametric approach.
7 See Hallerbach [1999].
8 See Bessis [1998] and Matten [2000], e.g.
9 For a comparison of these Credit-VaR models we refer to Crouhy, Galai & Mark [2000].
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2. Preliminaries

In this section we introduce notation and present some useful results. We first discuss the
theoretical concepts of overall CaR, marginal CaR and component CaR.10 Since we want to
discuss CaR and RAROC in the most general context, the only (and very weak) assumption
we make is that all relevant return distributions have finite first moments. We then summarize
the concept of RAROC and outline its role in RAPM.

defining overall CaR
Consider a portfolio p  with current value pV , consisting of N  components. In the broad

context of EWRM the portfolio is the overall firm and the components represent the
partitioning of the firm’s business activities according to separate activities, organized
activities or business units, e.g.  In the context of credit risk the components are the individual
credits or loans comprised in the portfolio. Given the current values { }i i pV ∈  of the dollar

positions in each of the component activities, the change in portfolio value over a holding
period t∆  equals:

(2.1) p p p i i
i p

V V r V r
∈

∆ ≡ = ∑% % % with : i pi p
V V

∈
=∑

where pr%  and ir%  denote the t∆  return on the portfolio and activity i , respectively. A tilde

marks a stochastic variable.11 All returns denote total returns and reflect both changes in
market value (“price return”) and cash flows (“cash return”) during the period.12 The portfolio
composition is assumed constant over the period t∆ .

Given the portfolio p , its expected dollar return is:

(2.2) p p p i i
i p

V V r V r
∈

∆ ≡ = ∑

where ir  is the expected percentage return on activity i. Given a confidence level c and an

evaluation horizon of t∆ , we define the quantile dollar return c
pV∆  and the quantile

percentage return c
pr  (given pV ) that satisfy the specified confidence level:

                                                
10 The following results (and notably the correspondence between CaR contributions and conditional
expectations) have been first derived in Hallerbach [1999]. See also Tasche [1999] for a detailed
discussion. In Hallerbach [1999] we also show how these metrics can be estimated in a non-parametric
context.
11 We define the variates { }iV%  and pV%  on the probability space (Ω ,F , Pr(·)), where the  σ-field F

contains subsets of the sample space Ω .
12 When a market value is not available, for example for non-traded credits, the mark-to-market valuation
is replaced with mark-to-model valuation. This introduces model risk.
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(2.3)
{ }
{ }

| Pr 1

| Pr 1

c c c
p p p p p

c c
p p p

V V V r V c

r r r c

∆ ∆ ≤ ∆ = = −

≤ = −

%

%

Overall portfolio CaR is now given by c c
p p p pCaR V r V≡ − ∆ = −  since CaR is defined in terms

of losses.13 When pV  is initially given, focus can be on c
pr  instead of on c

pV∆ .

defining marginal expected return and marginal CaR
When studying portfolio optimality in section 3 we need information about the marginal
expected returns and the marginal CaRs of the individual securities comprised in the portfolio.

From (2.2)  it follows that marginal expected return of security i  is:

(2.4)
( )p p

i
i

r V
r i p

V

∂

∂
= ∀ ∈

The marginal CaR ipMCaR  is the change in portfolio CaR resulting from a marginal

change in the dollar position in component activity i :

(2.5) p
ip

i

CaR
MCaR

V

∂

∂
≡ i p∈

Note that eq.(2.5) also applies to an activity N  not yet included in the firm’s portfolio. The
initial portfolio p then comprises N−1  component activities and we consider this (N−1)-
element portfolio as an N-element portfolio where 0NV =  initially.

To evaluate marginal CaR we start from eq.(2.1) which identifies the portfolio dollar
return as a convex combination of the dollar returns on the individual components. Because
of the portfolio partitioning and by the very definition of conditional expectations we have:

(2.6) { } { }p p p p i i p
i p

V E r V V V E r V
∈

∆ = ∆ = ∆∑% % % %% %

Note that the conditional expectation { }i pE r V∆% %%  is a random variable.14 Also note that the

portfolio dollar return is a linearly homogeneous function of the positions { }i i pV ∈ . Since this

function is continuous and analytic we can apply Euler’s theorem:

                                                
13 We obtain changes in dollar values by combining returns with mark-to-market values. Whether
focusing on returns or on dollar positions, transactions with zero initial value (such as credit swaps)
have to be decomposed into non-zero long and short positions (mapping).
14 Hence { }i pE r V∆% %%  is to be interpreted as the expectation of ~ri  conditional to the σ-field F   relative to

which pV∆ %  is defined.
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(2.7) p
p i i i

ii p i p

V
V V V r

V

∂

∂∈ ∈

∆
∆ = =∑ ∑

%% %

Substituting eq.(2.7) in (2.6) and conditioning on c
p pV V∆ = ∆%  yields:

(2.8) { }pc c c
p p i p p i i p

ii p i p

V
CaR V V E V V V E r V

V

∂

∂∈ ∈

 ∆ = − ∆ = − ∆ = ∆ = − ∆ 
  

∑ ∑
% % %

where we have added a minus sign since CaR is defined in terms of losses. Since the
portfolio return now takes the particular value c

pV∆   the conditional expectations become

deterministic. Note that the conditional expectation in the first equality of eq.(2.8) indicates
ipMCaR . Hence:

(2.9) { }                   c
ip i pMCaR E r V= − ∆%

The intuition behind eq.(2.9) is clear. When there is a positive (negative) interdependence
between iV∆ %  and pV∆ %  then large negative portfolio returns will on average be associated

with large negative (positive) component returns. Increasing (decreasing) the size of the
activity position iV  will then lower the portfolio value even more, thus increasing the
portfolio’s CaR.

defining and relating component CaR
Since:

(2.10) { }c
p i i p i ip

i p i p

CaR V E r V V MCaR
∈ ∈

= − ∆ =∑ ∑%

each term i measures the total contribution of asset i  to the overall portfolio VaR. Hence
i ip ipV MCaR CCaR⋅ = is the component CaR of activity i. These component CaRs can

uniquely be attributed to each of the individual components of that portfolio and aggregate
linearly into the total diversified portfolio CaR:

(2.11) p ip i ip
i p i p

CaR CCaR V MCaR
∈ ∈

≡ =∑ ∑

Note that because of return interdependencies and diversification effects the components’
stand-alone CaRs do not add up to the diversified portfolio CaR.15, 16

                                                
15 The break-down of VaR according to portfolio components or market risk factors as suggested by
Fong & Vasicek [1997], for example, suffers from this shortcoming and is hence not useful.
16 The sum of the stand-alone VaRs can be larger than the portfolio VaR but also smaller. The latter
phenomenon indicates that VaR is not “sub-additive”; see Artzner et al. [1999].
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Eq.(2.11) is a powerful result. It does not depend on any distributional assumptions
but prevails since the portfolio operator is linear. Without loss of generalization the
component activities may be mapped in a non-linear fashion onto standardized positions or
underlying state variables (like default processes or recovery rates, as in  JPMorgan’s [1997]
CreditMetrics).

economic capital, RAPM and RAROC
Since economic capital is necessary to cover potential losses from the firm’s activities
positions { }i i pV ∈ , the RAP is measured by relating generated income to economic capital.

The resulting RAP metric, termed RAROC, was first proposed by Bank of America.17 It
takes the form:

(2.12)
adjusted income

RAROC
CaR

=

The denominator is “risk-adjusted” or economic capital. In the numerator income is revenues
minus costs minus expected losses. The  adjustment for expected loss is generally considered
as a risk correction (although it is a provision for expected losses, which by definition does
not represent risk). For this reason, (2.12) is sometimes called a RARORAC (risk-adjusted
return on risk-adjusted capital) measure. Various specific definitions exist (such as RAROC,
RARORAC and RORAC), but most variations are due to the specification of the numerator.

The  numerator indeed raises some questions. Should financing (opportunity) costs
be taken into account? The numerator then represents the “economic profit”. More
importantly we ask ourselves why the focus is on cash income? Return can also be generated
from capital gains or losses? Defining income on a mark-to-market basis can correct for this.
In ex post applications, how is the numerator measured? Since risk is involved we would like
to specify the numerator as an expected return. In ex post applications the fair game
assumption could be invoked to estimate the expected value by means of an historical
average.

The denominator raises the issue of how to allocate the amount of economic capital
that relates to the overall diversified firm portfolio over the different sub-levels within the firm
(ranging from business units, via geographical locations to trading desks, individual traders
and ultimately to individual business transactions).

These ambiguities call for a fool proof definition of RAROC. However, in the next
section we argue that the relevant definition of the RAP measure depends on the decision
context, comprising the pursued objective(s) and the imposed constraints.

3. Portfolio optimization, RAROC and RAPM

In this section we show how the relevant definition of risk contributions and various RAROC
measures are implied by a portfolio optimization model. Each RAROC measure is relevant
within the specific underlying optimization context. We assume that the firm strives to

                                                
17 See Zaik, Walter & Kelling [1996]. For general exposes we refer to Bessis [1998], Matten [2000] or
Smithson & Hayt [2001].
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maximize the expected return on its activities portfolio subject to a constraint on the required
economic capital. Economic capital is measured by the firm’s CaR over the horizon. We
classify the possible models using two dimensions. The first dimension is defined by the scale
of operations. The capital invested in the firm activities (or the budget available for the firm’s
business ventures) pV  may either be fixed or free. In the former case the avialable capital is

restricted (like in a standard portfolio investment problem); in the latter case the firm may
increase (decrease) the scale of its activities by raising more (less) capital. The second
dimension is defined by the type of CaR constraint.18  This constraint on economic capital
may be formulated in either absolute or relative terms. The absolute CaR constraint is given
by the portfolio dollar CaR level max

pCaR  that should not be exceeded. The relative

constraint is defined in percentage terms ,maxc
pr−  of pV  (see eq.(2.3)). The possible

combinations are summarized in Exhibit 1.

Exhibit 1: A simple typology of CaR-constrained optimization problems

CaR restriction

firm’s capital absolute ($) relative (%)

pV  free
I: max p iV V∆ = ∆∑
    s.t.  maxc

p pV CaR∆ ≥ −

IV: max p iV V∆ = ∆∑
       s.t.  ,maxc c

p p pV V r∆ ≥ ⋅

pV  fixed

II: max p p pV r V∆ =

     s.t.  maxc
p pV CaR∆ ≥ −

            p iV V≥ ∑

III: max p p pV r V∆ =

       s.t.  ,maxc c
p p pV V r∆ ≥ ⋅

              p iV V≥ ∑

In all cases we may wish to restrict short positions, 0,iV i p≥ ∀ ∈ . In that case Kuhn-
Tucker conditions will apply and only positive positions are considered.19 When pV  is fixed,

max ,maxc
p p pCaR r V⇔ − ⋅  so the optimization problems II and III are equivalent. When the

CaR restriction is formulated in relative terms and pV  is not fixed, as in IV, the problem

becomes indeterminate and can only be solved for { }iV  given some level of  pV . Actually,

IV is not realistic under our simple assumptions since in practice there will be some limit to
the firm’s activities anyhow. Should we allow for a trade-off between expected return and
CaR, or when we would add other restrictions, IV would become a relevant starting point.

                                                
18 There is some debate whether CaR should be discounted over the horizon or not. When CaR should
cover potential losses at the end of the horizon the discounting argument is clear. When also
intermediate losses should be covered the case is not clear. In the following we refrain from discounting
CaR, but the necessary adjustment is obvious.
19 Throughout the paper we assume that second order conditions are satisfied. Hence we assume that the
feasible CaR region is convex.
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But for now we are left with two different cases: on the one hand we have problem I, and on
the other problems II and III.

Another aspect that proves to be important is whether riskfree activities (riskfree
borrowing and/or lending) are avialable to the firm. In section 3.1 we assume that all portfolio
components are risky, so there does not exist a riskfree rate. In section 3.2 we drop this
assumption and allow for riskfree investment opportunities.

3.1 Portfolio optimization without riskfree rate

problem I
In situation I the firm strives to maximize the expected dollar return over the chosen time
horizon subject to an absolute CaR constraint. The risk and hence the economic capital of
the firm’s activities is restricted by the maximum admissible CaR level max

pCaR . The

optimization problem becomes choosing { }i i pV ∈  such that:

(3.1)
{ }

max
i

p
V

V∆

max. . c
p ps t V CaR∆ ≥ −

We can safely assume that there exist sufficient profitable business ventures so that the CaR
constraint is binding. Hence the maximum allowed amount of economic capital will be
employed. Forming the Lagrangian and taking the partial derivatives to iV  leads to the
following first order conditions (FOCs henceforth):

(3.2) 0          *i ipr MCaR i pλ− ⋅ = ∀ ∈

together with the original CaR constraint. λ is the Lagrange multiplier and and an asterisk
refers to the optimum. Multiplying with iV  and summing over *i p∈  yields, in combination
with (3.2):

(3.3)
**

*

* * *
          , *j pi

ip jp p

V VV
i j p

CCaR CCaR CaR

∆ ∆∆
= = ∀ ∈

provided that * 0, *ipMCaR i p≠ ∀ ∈ . Eq.(3.3) is the portfolio optimality condition. When

the portfolio is optimal the ratio of marginal (total) return contribution and marginal (total)
CaR contribution is constant over all activities in  p*.

To allow for zero marginal CaRs we rewrite (3.3) as:

(3.4) **
*

*
          *ip

i p
p

CCaR
V V i p

CaR
∆ = ∆ ∀ ∈
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Optimal allocation of capital is achieved when (3.3) (or (3.4)) is satisfied. Note that for each
activity its expected dollar return should be related to its total contribution to the diversified
portfolio CaR.

In the last term of (3.3) we recognize the familiar firm-wide RARORAC (or
RAROC). The numerator is the expected dollar return on the activity portfolio. By definition
this return (i) is net of the expected loss and (ii) includes price returns (capital gains/losses).
In the conventional definition, only the cash return (i.e. income) is considered (contrasting (ii))
and subtracting the expected loss is meant to yield the “risk-adjusted return”. Since the
expected loss is expected by definition, this is not a risk correction at all.

The first term of (3.3) indicates how to appraise the ex ante performance of activity
i: by relating its expected dollar return to its contribution to overall economic capital. Now
suppose that given some portfolio p we find that:

(3.5) ,p ji

ip p jp

V VV
i j p

CCaR CCaR CCaR

∆ ∆∆
> > ∈

Obviously p  is not optimal. This implies that p  can be enhanced by increasing the position in
activity i  and decreasing the position in j. Ex ante  performance analysis is thus relevant for
evaluating the optimality of some (initial) portfolio and deriving portfolio revision recipes.

Under a fair game assumption activity i’s ex post performance can be gauged by
relating its average realized dollar return to its contribution to overall economic capital.

In practice the prescription is to maximize the firm’s RAROC. As the Appendix shows,
maximizing RAROC yields the same FOCs eqs.(3.3) and (3.4). Obviously the unconstrained
maximization of conventional RAROC assumes the underlying optimization problem (3.1).
Conversely, maximizing RAROC can be justified on the basis of (3.1).

But suppose now that the firm’s total capital pV  is fixed, or that riskfree ventures

exist. Obviously the portfolio optimality conditions will change – and hence the implied risk-
adjusted performance measure. This is investigated below.

problems II and III
In situations II and III the total available capital pV  is fixed and the firm strives to maximize

the expected dollar return over the chosen time horizon subject to an absolute or relative
CaR constraint. The optimization problem now becomes choosing { }i i pV ∈  such that:

(3.6)
{ }

max
i

p p p
V

V r V∆ =

   max ,max. . c c
p p p ps t V CaR V r∆ ≥ − = ⋅

p iV V≥ ∑

From the Lagrangian the FOCs are:

(3.7) 0          *i ipr MCaR i pλ θ− ⋅ − = ∀ ∈
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together with the original constraints. λ and θ  are the Lagrange multipliers of the CaR and
the capital constraints, respectively. Multiplying with iV  and summing over *i p∈  yields, in
combination with (3.7):

(3.8)
* ** *

* *

* * *
          , *j j p pi i

ip jp p

V V V VV V
i j p

CCaR CCaR CaR

θ θθ ∆ − ∆ −∆ −
= = ∀ ∈

with max
*p pCaR CaR= , provided that * 0, *ipMCaR i p≠ ∀ ∈ . This implied portfolio

optimality condition is equivalent to:

(3.9) *

* * *

          , *j pi
c

ip jp p

r rr
i j p

MCaR MCaR r

θ θθ − −−
= = ∀ ∈

−

When the activity portfolio is optimal the ratio of marginal (total) adjusted return contribution
and marginal (total) CaR contribution is constant over all activities in  p*. Expected returns
are adjusted with a factor θ  (the shadow price of relaxing the capital constraint) indicating
the percentage opportunity cost of obtaining additional funds. To allow for zero marginal
CaRs we rewrite (3.8) as:

(3.10) ** *
* *

*
          *ip

i i p p
p

CCaR
V V V V i p

CaR
θ θ ∆ − = ∆ − ∀ ∈ 

Optimal allocation of the available restricted capital is now achieved when (3.8) (or (3.9) or
(3.10)) is satisfied.

The last term of (3.8) (or (3.9) in percentage terms) is the relevant implied risk-
adjusted performance metric. The numerator is the expected adjusted return on the activity
portfolio. Again, this return (i) is net of the expected loss and (ii) includes price returns
(capital gains/losses). Moreover it is (iii) adjusted for the implied shadow cost θ of obtaining
additional funds. The first term of (3.8) indicates how to appraise the performance of activity
i: by relating its expected or average adjusted dollar return to its contribution to overall
economic capital. From an ex ante perspective, deviations for the FOCs can be used to
guide portfolio revisions in order to enhance the sub-optimal portfolio. When the adjustment
sub (iii) is ignored, optimal allocation is not guaranteed. Likewise, ex post performance
analysis is distorted. Conventional RAROC analysis on the basis of (3.3) for the portfolio, or
the individual activities comprised therein, will fail in this case. As shown in the Appendix, the
unconstrained maximization of conventional RAROC is at odds with the underlying
optimization problem (3.6).

Let θ  now be the explicitly specified percentange cost of increasing the capital base. The
optimization problem becomes max i i i pr V V Vθ  − − ∑ ∑  subject to maxc

p pV CaR∆ ≥ −

(with pV  no longer restricted). This alternative problem resembles situation I where pV  is

not fixed, but has the same FOCs (3.8) and (3.10) as above. Alternatively, the total financing
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costs over pV  (not restricted) can be taken into account, leading to ( )max i ir Vθ−∑
subject to the CaR contstraint. Again this results in the same FOCs (3.8) and (3.10).

3.2 Portfolio optimization allowing for riskfree activities

We now assume that riskfree borrowing and lending opportunities exist for the firm. Denoting
activity 1 as riskfree, its return is the riskfree rate fr . In general, the dollar return on the

firm’s total activity portfolio is:

(3.11) 1 1
2

N

p f i i f q
i

V V r V r V r V
=

∆ = + = + ∆∑% %% with q q qV V r∆ =% %

where qV  is the risky part of portfolio p, satisfying 
2

N
q i ii

V V r
=

≡ ∑ % .

When pV  is fixed, we have 1 2
N

p i ii
V V V r

=
= − ∑ %  as a function of the risky ventures.

Defining the weight w of the risky activities in the total portfolio, the excess total portfolio
return is:

(3.12) ( )p f q fr r w r r− = ⋅ −% % with /q pw V V≡

Portfolio p’s excess dollar return CaR  is:

(3.13) ( )c
pf p p f p p fCaR V r r CaR V r≡ − − = +

It finally readily follows that the excess dollar return CaRs of  p and q are equal:

(3.14) ( ) ( )1c c
pf p p f q q f qfCaR V r r V w r r CaR

w
 = − − = − − ≡ 
 

We now revisit the four problems in Exhibit 1.

problem I
In this situation the firm strives to maximize the expected dollar return over the unrestricted
capital pV  subject to the absolute CaR constraint:

(3.15) { } ( ){ }max max
1Pr Pr 1p p q p fV CaR V CaR V r c∆ ≤ − = ∆ ≤ − + = −% %

where we have used (3.11). Hence:

(3.16) max
1

c
q q p fCaR V CaR V r= − ∆ = +



14

Eq.(3.16) shows that this optimization case is not interesting. The absolute CaR restriction on
p  can be satisfied with  any  risky portfolio q simply by adding sufficient riskfree investment

1 0V > .

problems II and III
When considering pV  fixed, the optimization problem is given by eq.(3.6) with FOCs (3.7).

For the riskfree activity i=1 we have 1p fMCaR r= − , so the FOC becomes:

(3.17) ( )1 frθ λ= +

Substituting in (3.7) yields:

(3.18) ( )*           *i f ip fr r MCaR r i pλ− = + ∀ ∈

Multiplying with iV  and summing over *i p∈  gives:

(3.19) ( ) ( )* *p p f p p fV r r CaR V rλ− = +

The LHS of (3.19) is the expected excess dollar return (i.e. dollar risk premium) on portfolio
p, and the term in parentheses on the RHS is p’s excess dollar return CaR:

(3.20) ( )c
pf p p f p p fCaR CaR V r V r r≡ + = − −

Eqs.(3.18) and (3.19) translate into:

(3.21)
* * * * *

*

* * *
          *i f i j f j p f p

ipf jpf pf

V r V V r V V r V
i q

CCaR CCaR CaR

∆ − ∆ − ∆ −
= = ∀ ∈

with max
*pf pfCaR CaR=  in excess return form, provided that * 0, *ipfMCaR i p≠ ∀ ∈ . This

is the implied portfolio optimality condition, equivalent to:

(3.22) * *

* * * *

     *i f j f p f q f
c c

ip f jp f p f q f

r r r r r r r r
i q

MCaR r MCaR r r r r r

− − − −
= = = ∀ ∈

+ + − + − +

The last equality follows from (3.12) and (3.14).The notable difference with (3.9) is that the
denominators are the excess return CaR contributions. Dowd [2000, p.221] disqualifies
conventional RAROC since it can become infinitely large by investing all capital in riskfree
ventures. But we see that the relevant RAROC measure in this limit case becomes
indeterminate.

To allow for zero marginal CaRs we rewrite (3.22) as:
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(3.23) *
*

* *
          *ip f

i f p f
p p f

MCaR r
r r r r i p

CaR V r

+
 − = − ∀ ∈ +

Multiplying both sides of (3.23) with pV  translates the expression into dollar terms as in

(3.21).Note that (3.23) corresponds to (3.4) cast in excess return form.
The FOC eq.(3.22) is identical to the FOC for the mean-VaR portfolio selection

problem as derived in Grootveld & Hallerbach [2000]. It reveals linear two-fund separation,
i.e. the optimal allocation within the risky portfolio q is independent of the total portfolio p.
For any value of the maximum admissible CaR the corresponding optimal portfolio allocation
consists of a linear combination of the risk free investment and only one single risky portfolio
q. 20 Note that this separation property is fundamentally different from that implied by the
maximization of expected utility; for the latter optimization case the results of Cass & Stiglitz
[1970] are definitive. The optimal allocation of the available capital is achieved when (3.21)
or (3.22) is satisfied, and these conditions apply for portfolio q. Given portfolio q  and the
CaR constraint, portfolio p  readily follows.

The last term of (3.21) (or (3.22) in percentage terms) is the relevant implied risk-
adjusted performance metric for this case. The numerator is the (dollar) risk premium on the
activity portfolio.21 The first term of (3.21) or (3.22) shows how to appraise the performance
of activity i: by relating its risk premium (or average excess return) to its contribution to
overall “excess” economic capital pf qfCaR CaR= . Again, using a conventional RAROC

measure will cloud the performance analysis.

An interesting aspect of this particular problem is that it simply optimization problem I as
studied in section 3.1, but now fully cast in excess returns. Hence the result from the
Appendix applies: unconstrained maximization of the implied adjusted RAROC measure (the
last term of (3.21) or (3.22)):

(3.24)
( )

max p f p p f
c

pf p f

V r V r r

CaR r r

∆ − −
=

− −

yields the same FOCs as in the two LHS terms of (3.21) or (3.22):

(3.25)
* * * *

* *
          *i f i j f j

ipf jpf

V r V V r V
i p

CCaR CCaR

∆ − ∆ −
= ∀ ∈

Note that the maximand in (3.24) is in spirit similar to the Sharpe ratio22: it measures the
expected excess return per unit of risk where risk is here defined in terms of the CaR of the

                                                
20 See also Arzac & Bawa [1977] and Tasche [1999] on this point.
21 Crouhy, Turnbull & Wakeman [1999] define an adjusted RAROC measure in the form of RAROC minus
the riskfree rate, divided by CAPM beta. This is to account for systematic (priced) risk instead of total
firm risk. However, they do not derive the metric nor indicate how it would be.
22 See Sharpe [1966,1994].
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excess returns. Without restricting preferences, mean-variance analysis is valid when portfolio
returns are elliptically distributed with finite variance.23 Such elliptical distributions are fully
defined by the location and scale parameters and do not exhibit skewness.24 In an elliptical
world the excess CaR of portfolio p is simply defined by the first two statistical moments of
the portfolio return distribution:

(3.26) ( )c
pf pf pf pfCaR r r k c σ= − = − + ⋅ (with pfσ < ∞  )

where pfσ  is the standard deviation of the excess return on portfolio p and  ( )k c  is the

proportionality factor belonging to the CaR confidence level c . For example when portfolio
returns are normally distributed we have 1( ) ( )k c N c−=  where ( )N ⋅ is the standard normal
distribution function. Incorporating (3.26) in (3.24) and some rearranging yields:

(3.27)
1

max 1 ( ) max
( )

p f pf p f

pf pf p f pf

r r r r
k c

r k c r r

σ

σ σ

−
 − −

= − + ⇔ 
− + ⋅ −  

given c. So in an elliptical world, the optimization problem (3.24) entails finding the portfolio
p  that maximizes its Sharpe ratio (the last term in (3.27)). Hence in an elliptical world the
two portfolio optimization problems are completely equivalent. This contradicts Campbell,
Huisman & Koedijk [2001]. However, as we expect that the underlying distributions in a
RAPM context are asymmetric, this disqualifies the convenient elliptical parametric
assumption.

For convenience, the relevant RAROC measures implied in each of the decision situations is
summarized in Exhibit 2. (Recall that IV is indeterminate.)

                                                
23 See Owen & Rabinovitch [1983].
24 The general class of (both finite and infinite variance) elliptical distributions  includes the Student t
distribution, the exponential distribution, symmetric stable (Pareto-Lévy) distributions with characteristic
exponent smaller than two and the normal distribution. Also non-normal variance mixtures of multivariate
normal distributions belong to the elliptical class, see for instance Chmielewski [1981] and Fang, Kotz &
Ng [1990].
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Exhibit 2: Adjusted RAROC measures implied in each of the decision situations (see in
Exhibit 1) of  CaR-constrained optimization.

riskfree ventures

firm’s capital no yes  ( ∃ rf )

pV  free I:                *

*

p

p

V
CaR
∆

I:                NA

pV  fixed II, III:   * *

*

p p

p

V V

CaR

θ∆ −
II, III:  

*
*

*

p f p

pf

V r V

CaR

∆ −

4. Conclusions

We argue that without explicitizing the relevant EWRM decision context (in the form of
clearly and unambiguously stipulating the objectives and constraints), it is not feasible to:
• ex ante optimize the firm’s activities portfolio;
• ex ante allocate economic capital over activities comprised in the firm-wide portfolio

according to their risk contributions;
• ex ante evaluate the quality of the activities portfolio in the light of pursued objectives

and imposed constraints;
• ex post evaluate overall portfolio performance;
• ex post attribute performance to individual activities.
We illustrated our argument with various simple optimization examples. Even though the
presented decision contexts are simplified, our results clearly show that applying RAPM on
the basis of conventional RAROC measures (as presented in the literature) more often than
not may lead to erroneous conclusions and actions.

For deriving relevant RAP measures we suggest the following “recipe”:
• identify objective(s) and constraints;
• derive the implied portfolio optimality conditions;
• apply the implied relevant RAP measure for ex ante portfolio enhancement and ex post

preformance evaluation and attribution.
A challenging route for further research is to uncover more complex typological decision
contexts as we may encounter them in practice and to reveal the implied – and hence
adequate –  RAP metrics.
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Appendix

Let A(x) and B(x) be analytic functions of  x=[x i], homogeneous of degrees g and h,
respectively. Consider the following constrained optimization problem:

(A.1)
{ }

max ( )A
x

x . . ( )s t B B≥x

where B is a (negative) number. The FOCs are:

(A.2) ( ) ( )A Bλ∇ + ∇ = 0x x

together with the original constraint, where λ is the Lagrange multiplier and ∇  is the gradient
operator. We assume second order conditions are satisfied. Premultiplying (A.2) with x’,
solving for λ and substituting back yields the portfolio optimality condition:

(A.3)
( )

( ) ( )
( )

g
h

B
A A

B
∇

∇ =
x*

x* x*
x*

where asterisks denote the optimum.
Now consider the first unconstrained problem, stipulating a fixed trade-off between

A(x) and B(x) governed by the parameter 0γ > :

(A.4)
{ }

max ( ) ( )A Bγ+
x

x x

This yields the same FOCs (A.2) and portfolio optimality condition (A.3)
Next consider the second unconstrained problem:

(A.4)
{ }

( )
max ( ) 0

( )
A

B
B

≠
−x

x
x

x

The FOC is:

(A.5)
( )

( ) ( )
( )

A
A B

B
∇ − ∇ = 0

x*
x* x*

x*

which translates into (A.3) when 1g h= =  (i.e. linear homogeneity).
The third unconstrained problem:

(A.6)
{ }

( )
max ( ) 0, 0 constant

( )
A

B
B

θ
θ

−
≠ ≠

−x

x
x

x

has FOCs:
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(A.7)
( )

( ) ( )
( )

A
A B

B
θ−

∇ − ∇ = 0
x*

x* x*
x*

which is incompatible with (A.3), even when 1g h= =

Now let the expected portfolio return pV∆
 
correspond to A(x) above, and the

portfolio CaR pCaR  (defined in terms of losses) correspond to -B(x). Since pV∆  and

pCaR  are linearly homogeneous in the activities { }i i p
V

∈
, maximizing pV∆  subject to only a

constraint on pCaR  is equivalent to maximizing p
p

p

V
RAROC

CaR

∆
≡  unconstrained.

Moreover, since pRAROC  is homogeneous of degree zero, this measure can be maximized

without taking into account any restriction on pV . The solution can simply be scaled to satisfy

this restriction. However, from the third problem above we have:

(A.8) max p

p

V

CaR

∆
⇔ max p p

p

V V

CaR

θ∆ −
n
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