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Abstract

We propose a method for estimating VaR and related risk measures describing the
tail of the conditional distribution of a heteroscedastic �nancial return series. Our
approach combines quasi maximum likelihood �tting of GARCH models to estimate
the current volatility and extreme value theory (EVT) for estimating the tail of the
innovation distribution of the GARCH model. We use our method to estimate con-
ditional quantiles (VaR) and conditional expected shortfalls (the expected size of a
return exceeding VaR), this being an alternative measure of tail risk with better the-
oretical properties than the quantile. Using backtesting we show that our procedure
gives better estimates than methods which ignore the heavy tails of the innovations
or the stochastic nature of the volatility. With the help of our �tted models and a
simulation approach we estimate the conditional quantiles of returns over multiple
day horizons and �nd evidence of a power scaling law, where the power depends in a
natural way on the current volatility level.

J.E.L. Subject Classi�cation: C.22, G.10, G.21

Keywords: Risk Measures, Value at Risk, Financial Time Series, GARCH models,
Extreme Value Theory, Backtesting

1 Introduction

The large increase in the number of traded assets in the portfolio of most �nancial in-
stitutions has made the measurement of market risk (the risk that a �nancial institution
incurs losses on its trading book due to adverse market movements) a primary concern for
regulators and for internal risk control. In particular, banks are now required to hold a
certain amount of capital as a cushion against adverse market movements. According to
the Capital Adequacy Directive by the Bank of International Settlement (BIS) in Basle,
(Basle Comittee 1996) the risk capital of a bank must be suÆcient to cover losses on the
bank's trading portfolio over a ten-day holding period in 99% of occasions. This value
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is usually referred to as Value at Risk (VaR). For purposes of internal risk control most
�nancial �rms use a holding period of one day and a con�dence level of 95%. From a
mathematical viewpoint VaR is of course simply a quantile of the Pro�t-and-Loss (P&L)
distribution of a given portfolio over a prescribed holding period.

In two recent papers, Artzner et al. (1997, 1998) have critisized VaR as a measure of
market risk on two grounds. First they show that VaR is not necessarily subadditive. They
explain that this may cause problems, if one bases a risk-management system of a �nancial
institution on VaR-limits for individual books. Moreover, VaR gives only an upper bound
on the losses that occur with a given frequency; VaR tells us nothing about the potential
size of the loss given that a loss exceeding this upper bound has occurred. Artzner et
al. propose the use of the so-called expected shortfall or tail conditional expectation instead
of VaR. The tail conditional expectation measures the expected loss given that the loss L
exceeds VaR; in mathematical terms it is given by E[LjL > VaR].

From a statistical viewpoint the main challenge in implementing one of these risk-
measures is to come up with a good estimate for the tails of the underlying P&L distribu-
tion; given such an estimate both VaR and expected shortfall are fairly easy to compute.

In this paper we are concerned with tail estimation for �nancial return series. Our
basic idealisation is that returns follow a stationary time series model with stochastic
volatility structure. There is strong empirical support for stochastic volatility in �nancial
time series; see for instance Pagan (1996) or Frey (1997). The presence of stochastic
volatility implies that returns are not necessarily independent over time. Hence with
such models there are two types of return distribution to be considered { the conditional
return distribution where the conditioning is on the current volatility and the marginal
or stationary distribution of the process.

Both distributions are of relevance to risk managers. The tails of the conditional return
distribution are essentially the object of interest in computing measures of market risk
and will therefore be the focus of this paper. The key concern of a risk manager is the
possible extent of a loss caused by an adverse market movement over the next day (or next
few days) given the current volatility background. The estimation of unconditional tails
provides di�erent, but complementary information about risk. Here we take the long-term
view and attempt to assign a magnitude to a speci�ed rare adverse event, such as a 5-year
or 10-year loss. This kind of information may be of interest to the risk manager who
wishes to perform a scenario analysis and get a feeling for the scale of worst case or stress
losses.

Schematically the existing approaches for estimating the P&L distribution of a portfo-
lio of securities can be divided into three groups: the nonparametric historical simulation
(HS) method; fully parametric methods based on an econometric model for volatility dy-
namics and the assumption of conditional normality (e.g. J.P. Morgan's Riskmetrics and
most models from the ARCH/GARCH family); and �nally methods based on extreme
value theory (EVT).

In the HS-approach the estimated P&L distribution of a portfolio is simply given
by the empirical distribution of past gains and losses on this portfolio. The method is
therefore easy to implement and avoids \ad-hoc-assumptions" on the form of the P&L dis-
tribution. However, the method su�ers from some serious drawbacks. Extreme quantiles
are notoriously diÆcult to estimate, as extrapolation beyond past observations is impos-
sible. Moreover, quantile estimates obtained by HS tend to be very volatile whenever a
large observation enters the sample. Finally, the method is unable to distinguish between
periods of high and low volatility, in particular if a long data sample is used to mitigate
the in
uence of the �rst two problems on the quality of the tail-estimate.

The more re�ned models within the conditional normality approach such as GARCH-
models, which model the dynamics of the conditional variance of asset returns, do yield
VaR estimates which re
ect the current volatility background. The main weakness of
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this approach is that the assumption of conditional normality does not seem to hold for
real data. As shown for instance in Danielsson and de Vries (1997b), models based on
conditional normality are therefore not well-suited for estimating the distribution of large
quantiles of the P&L-distribution.1

The estimation of return distributions of �nancial time series via EVT is a topical issue
which has given rise to some recent work (Embrechts, Resnick, and Samorodnitsky 1998,
Embrechts, Resnick, and Samorodnitsky 1999, Longin 1997b, Longin 1997a, McNeil 1997,
McNeil 1998, Danielsson and de Vries 1997a, Danielsson and de Vries 1997b, Danielsson,
Hartmann, and de Vries 1998). In all these papers the focus is on estimating the un-
conditional (stationary) distribution of asset returns. Longin (1997b) and McNeil (1998)
use estimation techniques based on limit theorems for block maxima. Longin ignores the
stochastic volatility exhibited by most �nancial return series and simply applies estimators
for the iid-case. McNeil uses a more sophisticated estimation technique which corrects
for the clustering of extremal events caused by stochastic volatility. Danielsson and de
Vries (1997a,b) use a semiparametric approach based on the Hill-estimator for the tail
index. Embrechts, Resnick, and Samorodnitsky (1999) advocate the use of a parametric
estimation technique which is based on a limit result for the excess-distribution over high
thresholds. This approach will be explained in detail in Section 2.2.

EVT-based methods have two features which make them attractive for tail estimation:
They are based on a sound statistical theory, and they o�er a parametric form for the tail
of a distribution. Hence these methods allow for some extrapolation beyond the range of
the data, even if care is required at this point. However, none of the previous EVT-based
methods for quantile estimation yields VaR-estimates which re
ect the current volatility
background. Given the conditional heteroscedasticity of most �nancial data, which is well-
documented by the considerable success of the models from the ARCH/GARCH family,
we believe this to be a major drawback of any kind of VaR-estimator.

In order to overcome the drawbacks of each of the above methods we combine ideas
from all three approaches. We use GARCH-modelling and pseudo-maximum-likelihood es-
timation to obtain estimates for the conditional volatility. Statistical tests and exploratory
data analysis con�rm that the error terms or residuals do form at least approximately an
iid series which exhibits heavy tails. We use historical simulation (for the central part
of the distribution) and threshold methods from EVT (for the tails) to estimate the
distribution of the error terms. The application of these methods is facilitated by the
(approximate) independence over time of the residuals. An estimate of the conditional
return distribution is now easily constructed from the distribution of the residuals and
our estimates of the conditional mean and volatility. This approach re
ects two styl-
ized facts exhibited by most �nancial return series, namely stochastic volatility and the
fat-tailedness of conditional return distributions over short time horizons.

In a very recent paper Barone-Adesi, Bourgoin, and Giannopoulos (1998) have inde-
pendently proposed an approach with some similarities to our own. They �t a GARCH-
model to a �nancial return series and use historical simulation to infer the distribution of
the residuals. They do not use EVT-based methods to estimate the tails of the distribu-
tion of the residuals. Their approach may work well in large data sets | they use 13 years
of daily data | where the empirical quantile provides a reasonable quantile estimator in
the tails. With smaller data sets threshold methods from EVT will give better estimates
of the tails of the residuals.

We test our approach on various return series. Backtesting shows that it yields better
estimates of VaR and expected shortfall than unconditional EVT or GARCH-modelling
with normally distributed error terms. In particular, our analysis contradicts Danielsson

1Note that the marginal distribution of a GARCH-model with normally distributed errors is usually
fat-tailed as it is a a mixture of normal distributions. However, this matters only for quantile estimation
over longer time-horizons; see e.g. DuÆe and Pan (1997).
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and de Vries (1997b), who state that \an unconditional approach is better suited for VaR
estimation than conditional volatility forecasts" (page 3 of their paper). On the other
hand, we see that models with normally distributed conditional return distribution yield
very bad estimates of the expected shortfall, so that there is a real need for working
with leptokurtic error distributions. We also study quantile estimation over longer time-
horizons using simulation. This is of interest, if one wants to obtain an estimate of the
10-day VaR (as required by the BIS-rule) from a model �tted to daily data. We �nd
that according to our models the return over k days (from day t to day t+ k say) can be
obtained by multiplying the quantiles of the one day return by k�t with scaling exponent
�t depending on the value of the volatility at t. As explained in Section 5 this casts some
doubts on the usefulness in a VaR context of a scaling-law postulated by Danielsson and
de Vries (1997b).

2 Methods

Let (Xt; t 2 Z) be a strictly stationary time series representing daily observations of the
negative log return on a �nancial asset price.2 We assume that the dynamics of X are
given by

Xt = �t + �tZt; (1)

where the innovations Zt are a strict white noise process (i.e. independent, identically
distributed) with zero mean, unit variance and marginal distribution function FZ(z). We
assume that �t and �t are measurable with respect to Gt�1, the information about the
return process available up to time t� 1.

Let FX(x) denote the marginal distribution of (Xt) and let FXt+1+:::+Xt+kjGt(x) denote
the predictive distribution of the return over the next k days, given knowledge of returns
up to and including day t. We are interested in estimating quantiles in the tails of these
distributions. For 0 < q < 1, an unconditional quantile is a quantile of the marginal
distribution denoted by

xq = inf fx 2 R : FX(x) � qg ;

and a conditional quantile is a quantile of the predictive distribution for the return over
the next k days denoted by

xtq(k) = inf
�
x 2 R : FXt+1+:::+Xt+kjGt(x) � q

	
:

We also consider an alternative measure of risk for the tail of a distribution known as the
expected shortfall. The unconditional expected shortfall is de�ned to be

Sq = E [X j X > xq] ;

and the conditional expected shortfall to be

Stq(k) = E

24 kX
j=1

Xt+j j
kX

j=1

Xt+j > xtq(k);Gt

35 :
We are principally interested in quantiles and expected shortfalls for the 1{step pre-

dictive distribution, which we denote respectively by xtq and Stq. Since

FXt+1jGt(x) = P f�t+1Zt+1 + �t+1 � x j Gtg

= FZ((x� �t+1)=�t+1);
2In the present paper we test our approach on return series generated by single assets only. However,

the method obviously also applies to the time series of pro�ts and losses generated by portfolios of �nancial
instruments and can therefore by used for the estimation of market risk measures in a portfolio context.
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these measures simplify to

xtq = �t+1 + �t+1zq; (2)

Stq = �t+1 + �t+1E [Z j Z > zq] ; (3)

where zq is the upper qth quantile of the marginal distribution of Zt which by assumption
does not depend on t.

To implement an estimation procedure for these measures we must choose a spe-
ci�c process in the class (1), i.e. a particular model for the dynamics of the conditional
mean and volatility. Many di�erent models for volatility dynamics have been proposed in
the econometric literature including models from the ARCH/GARCH family (Bollerslev,
Chou, and Kroner 1992), HARCH processes (M�uller, Dacarogna, Dav�e, Olsen, Pictet, and
von Weizs�acker 1997) and stochastic volatility models (Shephard 1996). In this paper we
use the parsimonious but e�ective GARCH(1,1) process for the volatility and an AR(1)
model for the dynamics of the conditional mean; the approach we propose extends easily
to more complex models.

In estimating xtq with GARCH-type models it is commonly assumed that the innova-
tion distribution is standard normal so that a quantile of the innovation distribution is
simply zq = ��1(q), where �(z) is the standard normal df. A GARCH-type model with
normal innovations can be �tted by maximum likelihood (ML) and �t+1 and �t+1 can be
estimated using standard 1{step forecasts, so that an estimate of xtq is easily constructed
using (3). This is close in spirit to the approach advocated in Risk Metrics, but our em-
pirical �nding, which we will later show, is that this approach often underestimates the
conditional quantile for q > 0:95; the distribution of the innovations seems generally to
be heavier-tailed or more leptokurtic than the normal.

Another standard approach is to assume that the innovations have a leptokurtic dis-
tribution such as Student's t{distribution (scaled to have variance 1). Suppose Z =p
(� � 2)=�T where T has a t{distribution on � > 2 degrees of freedom with df FT (t).

Then zq =
p
(� � 2)=�F�1

T (q). GARCH-type models with t{innovations can also be �t-
ted with maximum likelihood and the additional parameter � can be estimated. We will
see in Section 2.2 that this method can be viewed as a special case of our approach; it
yields quite satisfactory results as long as the positive and the negative tail of the return
distribution are (roughly) equal.

The method proposed in this paper makes minimal assumptions about the underlying
innovation distribution and concentrates on modelling its tail using extreme value theory
(EVT). We use a two stage approach which can be summarised as follows.

1. Fit a GARCH-type model to the return data making no assumption about FZ(z)
and using a pseudo maximum likelihood approach (PML). Estimate �t+1 and �t+1
using the �tted model and calculate the implied model residuals.

2. Consider the residuals to be a realisation of a strict white noise process and use
extreme value theory (EVT) to model the tail of FZ(z). Use this EVT model to
estimate zq for q > 0:95.

We go into these stages in more detail in the next two sections and illustrate them by
means of an example using daily negative log returns on the Standard & Poors index.

2.1 Estimating �t+1 and �t+1 using PML

For predictive purposes we �x a constant memory n so that on day t our data consist of
the last n negative log returns (xt�n+1; : : : ; xt�1; xt). We consider these to be a realisation
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from a AR(1){GARCH(1,1) process. Hence the conditional variance of the mean-adjusted
series �t = Xt � �t is given by

�2t = �0 + �1�
2
t�1 + ��2t�1; (4)

where �0 > 0, �1 > 0 and � > 0. The conditional mean is given by

�t = �Xt�1: (5)

This model is a special case of the general �rst order stochastic volatility process con-
sidered by Duan (1997), who uses a result by Brandt (1986) to give conditions for strict
stationarity. The mean-adjusted series (�t) is strictly stationary if

E
�
log
�
� + �1Z

2
t�1

��
< 0: (6)

By using Jensen's inequality and the convexity of � log(x) it is seen that a suÆcient
condition for (6) is that �+�1 < 1, which moreover ensures that the marginal distribution
FX(x) has a �nite second moment.

This model is �tted using the pseudo-maximum-likelihood (PML) method. This means
that the likelihood for a GARCH(1,1) model with normal innovations is maximized to
obtain parameter estimates �̂ = (�̂; b�0; b�1; �̂)T . Whilst this amounts to �tting a model
using a distributional assumption we do not necessarily believe, the PML method delivers
reasonable parameter estimates. In fact, it can be shown that the PML method yields a
consistent and asymptotically normal estimator; see for instance Chapter 4 of Gouri�eroux
(1997).

Estimates of the conditional mean and standard deviation series (�̂t�n+1; : : : ; �̂t) and
(�̂t�n+1; : : : ; �̂t) can be calculated recursively from (4) and (5) after substitution of sen-
sible starting values. In Figure 1 we show an arbitrary thousand day excerpt from our
dataset containing the stock market crash of October 1987; the estimated conditional
standard deviation derived from the GARCH �t is shown below the series.

Residuals are calculated both to check the adequacy of the GARCH modelling and to
use in Stage 2 of the method. They are calculated as

(zt�n+1; : : : ; zt) =

�
xt�n+1 � �̂t�n+1

�̂t�n+1
; : : : ;

xt � �̂t
�̂t

�
;

and should be iid if the �tted model is tenable. In Figure 2 we plot correlograms for the
raw data and their squared values as well as for the residuals and squared residuals. While
the raw data are clearly not iid, this assumption may be tenable for the residuals.3 The
stationarity of the �tted model can be checked by verifying that �̂ + �̂1 < 1.

If we are satis�ed with the �tted model, we end stage 1 by calculating estimates of
the conditional mean and variance for day t+ 1, which are the obvious 1{step forecasts

�̂t+1 = �̂xt;

�̂2t+1 = c�0 +c�1�̂2t + �̂�̂2t ;

where �̂t = xt � �̂t.

2.2 Estimating zq using EVT

We begin stage 2 by forming a QQ{Plot of the residuals against the normal distribution to
con�rm that an assumption of conditional normality is unrealistic, and that the innovation
process has fat tails or is leptokurtic { see Figure 3.

3We also ran some Ljung-Box tests in selected time periods and found no evidence against the iid{
hypothesis for the residuals.
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We then �x a high threshold u and we assume that excess residuals over this threshold
have a generalized Pareto distribution (GPD) with df

G�;�(y) =

(
1� (1 + �y=�)�1=� if � 6= 0;

1� exp(�y=�) if � = 0;

where � > 0, and the support is y � 0 when � � 0 and 0 � y � ��=� when � < 0.
This particular distributional choice is motivated by a limit result in EVT. Consider

a general df F and the corresponding excess distribution above the threshold u given by

Fu(y) = P fX � u � y j X > ug =
F (y + u)� F (u)

1� F (u)
;

for 0 � y < x0 � u, where x0 is the (�nite or in�nite) right endpoint of F . Balkema and
de Haan (1974) and Pickands (1975) showed for a large class of distributions F that it is
possible to �nd a positive measurable function �(u) such that

lim
u!x0

sup
0�y<x0�u

jFu(y)�G�;�(u)(y)j = 0: (7)

For more details consult Theorem 3.4.13 on page 165 of Embrechts, Kl�uppelberg, and
Mikosch (1997).

In the class of distributions for which this result holds are essentially all the common
continuous distributions of statistics, and these may be further subdivided into three
groups according to the value of the parameter � in the limiting GPD approximation to
the excess distribution. The case � > 0 corresponds to the heavy-tailed distributions
whose tails decay like power functions such as the Pareto, Student's t, Cauchy, Burr,
loggamma and Fr�echet distributions. The case � = 0 corresponds to distributions like the
normal, exponential, gamma and lognormal, whose tails decay exponentially; we call such
distributions thin-tailed. The �nal group of distributions are short-tailed distributions
(� < 0) with a �nite right endpoint like the uniform and beta distributions.

We assume the the tail of the underlying distribution begins at the threshold u. From
our sample of n points a random number N = Nu > 0 will exceed this threshold. If we
assume that the N excesses over the threshold are iid with exact GPD distribution, Smith
(1987) has shown that maximum likelihood estimates �̂N and �̂N of the GPD parameters
� and � are consistent and asymptotically normal as N !1, provided � > �1=2. Under
the weaker assumption that the excesses are iid from Fu(y) which is only approximately
GPD he also obtains asymptotic normality results for �̂N and �̂N . By letting u = un ! x0
and N = Nu ! 1 as n ! 1 he shows essentially that the procedure is asymptotically
unbiased provided that u! x0 suÆciently fast. The necessary speed depends on the rate
of convergence in (7). In practical terms this means that our best GPD estimator of the
excess distribution is obtained by trading bias o� against variance. We choose u high to
reduce the chance of bias whilst keeping N large (i.e. u low) to control the variance of the
parameter estimates.

Consider now the following equality for points x > u in the tail of F

1� F (x) = (1� F (u)) (1� Fu(x� u)) : (8)

If we estimate the �rst term on the right hand side of (8) using the random proportion of
the data in the tail N=n, and if we estimate the second term by approximating the excess
distribution with a generalized Pareto distribution �tted by maximum likelihood, we get
the tail estimator

F̂ (x) = 1�
N

n

�
1 + �̂N

x� u

�̂N

��1=�̂N
;
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for x > u. Smith (1987) also investigates the asymptotic relative error of this estimator
and gets a result of the form

N1=2

 
1� F̂ (x)

1� F (x)
� 1

!
d
! N(0; v2);

as u = un ! x0 and N = Nu ! 1, where the asymptotic unbiasedness again requires
that u! x0 suÆciently fast.

In practice we will actually modify the procedure slightly and �x the number of data
in the tail to be N = k where k � n. This e�ectively gives us a random threshold
at the (k + 1)th order statistic. Let z(1) � z(2) � : : : � z(n) represent the ordered
residuals. The generalized Pareto distribution with parameters � and � is �tted to the
data (z(1)�z(k+1); : : : ; z(k)�z(k+1)), the excess amounts over the threshold for all residuals
exceeding the threshold. The form of the tail estimator for FZ(z) is then

F̂Z(z) = 1�
k

n

�
1 + �̂k

z � z(k+1)

�̂k

��1=�̂k
: (9)

For q > 1� k=n we can invert this tail formula to get

bzq = z(k+1) +
�̂k

�̂k

 �
1� q

k=n

���̂k
� 1

!
: (10)

In Table 1 we give threshold values and GPD parameter estimates for both tails of the
innovation distribution of the test data in the case that k = 100. In Figure 4 we show the
corresponding tail estimators (9). We are principally interested in the left picture marked
Losses which corresponds to large positive residuals. The solid lines in both pictures
correspond to the GPD tail estimates and can be seen to model the residuals well. Also
shown is a dashed line which corresponds to the standard normal distribution and a
dotted line which corresponds to the estimated conditional t distribution in a GARCH
model with t innovations. The normal distribution clearly underestimates the extent of
large losses and also of the largest gains, which we would already expect from the QQ{plot.
The t distribution, on the other hand, underestimates the losses and overestimates the
gains. This illustrates the drawbacks of using a symmetric distribution with data which
are asymmetric in the tails.

Tail z(k+1) �̂ s.e. �̂ s.e.

Losses 1.215 0.224 (0.122) 0.568 (0.089)
Gains 1.120 -0.096 (0.090) 0.589 (0.079)

Table 1: Threshold values and maximum likelihood GPD parameter estimates used in the
construction of tail estimators for both tails of the innovation distribution of the test data.
Note that k = 100 in both cases. Standard errors (s.e.s) are calculated using a standard
likelihood approach based on the observed Fisher information matrix.

With more symmetric data the conditional t distribution often works quite well and
it can, in fact, be viewed as a special case of our method. As already mentioned, it is an
example of a heavy-tailed distribution, i.e. a distribution whose limiting excess distribution
is GPD with � > 0. Gnedenko (1943) characterized all such distributions as having tails
of the form

1� F (x) = x�1=�L(x); (11)
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where L(x) is a slowly varying function and � is the positive parameter of the limiting
GPD. 1=� is often referred to as the tail index of F . For the t distribution with � degrees
of freedom the tail can be shown to satisfy

1� F (x) � �(��1)=2x�� ;

so that this provides a very simple example of a symmetric distribution in this class, and
the value of � in the limiting GPD is the reciprocal of the degrees of freedom (McNeil and
Saladin 1997).

Fitting a GARCH model with t innovations can be thought of as estimating the � in
our GPD tail estimator by simpler means. Inspection of the form of the likelihood of the
t{distribution shows that the estimate of � will be sensitive mainly to large observations
so that it is not surprising that the method gives a reasonable �t in the tails although all
data are used in the estimation. Our method has, however, the advantage that we have
an explicit model for each tail. We estimate two parameters in each case, which gives a
better �t in general.

We will also use the GPD tail estimator (9) to estimate the right tail of the negative
return distribution FX(x) and to calculate the unconditional quantile estimate x̂q, an
approach that we will call unconditional EVT. We investigate whether this estimate also
provides a reasonable estimate of xtq. We note however that the assumption of independent
excesses over threshold is much less satisfactory for the raw return data. The asymptotics
of the procedure are much more poorly understood if applied directly to the raw return
data. Even if the procedure can be shown to be theoretically justi�ed, in practice it
is likely to give much more unstable results when applied to non{iid data (see Figure
5.5.4. on page 270 of Embrechts, Kl�uppelberg, and Mikosch (1997) for a related example).

3 Backtesting

We backtest the method on �ve historical series of log returns: the Standard & Poors
index from January 1960 to June 1993, the DAX index from January 1973 to July 1996,
the BMW share price over the same period, the US dollar British pound exchange rate
from January 1980 to May 1996 and the price of gold from January 1980 to December
1997.

To backtest the method on a historical series x1; : : : xm, where m � n, we calculate
x̂tq on days t in the set T = fn; : : : ;m� 1g using a time window of n days each time.
In our implementation we have set n = 1000 so that we use somewhat less than the last
four years of data for each prediction. We always set the constant k = 100 so that the
largest 100 residuals are considered to come from the tail of the innovation distribution.
This means e�ectively that the 90th percentile of the innovation distribution is estimated
by historical simulation, but that higher percentiles are estimated using the GPD tail
estimator. On each day t 2 T we �t a new AR(1)-GARCH(1,1) model and determine
a new GPD tail estimate. Figure 5 shows part of the backtest for the DAX index. We
have plotted the negative log returns for a three year period commencing on the �rst of
October 1987; superimposed on this plot is the EVT conditional quantile estimate x̂t0:99
(dashed line) and the EVT unconditional quantile estimate x̂0:99 (dotted line).

We compare x̂tq with xt+1 for q 2 f0:95; 0:99; 0:995g. A violation is said to occur
whenever xt+1 > x̂tq. The violations corresponding to the backtest in Figure 5 are shown
in Figure 6. We use di�erent plotting symbols to show violations of the conditional EVT,
conditional normal and unconditional EVT quantile estimates. In Figure 7 the portion of
Figure 6 relating to the crash of October 1987 has been enlarged.

It is possible to develop a binomial test of the success of these quantile estimation
methods based on the number of violations. If we assume the dynamics described in (1),
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S&P DAX BMW USDGBP Gold
Length of Test 7414 5146 5146 3274 3413

0.95 Quantile
Expected 371 257 257 164 171
Conditional EVT 366 (0.41) 258 (0.49) 261 (0.42) 151 (0.16) 155 (0.12)
Conditional Normal 384 (0.25) 238 (0.11) 210 (0.00) 169 (0.35) 122 (0.00)
Conditional t 404 (0.04) 253 (0.41) 245 (0.23) 186 (0.04) 168 (0.44)
Unonditional EVT 402 (0.05) 266 (0.30) 251 (0.36) 156 (0.29) 131 (0.00)

0.99 Quantile
Expected 74 51 51 33 34
Conditional EVT 73 (0.48) 55 (0.33) 48 (0.35) 35 (0.37) 25 (0.06)
Conditional Normal 104 (0.00) 74 (0.00) 86 (0.00) 56 (0.00) 43 (0.08)
Conditional t 78 (0.34) 61 (0.11) 52 (0.49) 40 (0.12) 29 (0.22)
Unonditional EVT 86 (0.10) 59 (0.16) 55 (0.33) 35 (0.37) 25 (0.06)

0.995 Quantile
Expected 37 26 26 16 17
Conditional EVT 43 (0.18) 24 (0.42) 29 (0.28) 21 (0.15) 18 (0.44)
Conditional Normal 63 (0.00) 44 (0.00) 57 (0.00) 41 (0.00) 33 (0.00)
Conditional t 45 (0.11) 32 (0.13) 18 (0.07) 21 (0.15) 20 (0.27)
Unonditional EVT 50 (0.02) 36 (0.03) 31 (0.17) 21 (0.15) 11 (0.08)

Table 2: Backtesting Results: Theoretically expected number of violations and number
of violations obtained using our approach (conditional EVT), a GARCH-model with nor-
mally distributed innovations, a GARCH-model with Student t innovations, and quantile
estimates obtained from unconditional EVT for various return series. p-values for a bino-
mial test are given in brackets.

the indicator for a violation at time t 2 T is Bernoulli

It := 1fXt+1>xtqg
= 1fZt+1>zqg � Be(1� q):

Moreover, It and Is are independent for t; s 2 T and t 6= s, since Zt+1 and Zs+1 are
independent. Therefore X

t2T

It � B (card(T ); 1 � q) ;

i.e. the total number of violations is binomially distributed under the model.
Under the null hypothesis that a method correctly estimates the conditional quantiles,

the empirical version of this statistic
P

t2T 1fxt+1>x̂tqg
is from the binomial distribution

B (card(T ); 1� q). If we count more violations than the expected number (1� q)card(T )
we perform a one-sided binomial test of the null hypothesis against the alternative that
the method systematically underestimates the conditional quantile. If we count less vio-
lations than expected we perform a one-sided binomial test of the null hypothesis against
the alternative that the method systematically overestimates the conditional quantile.
The corresponding binomial probabilities are given in Table 1 alongside the numbers of
violations for each method. A p-value less than 0.05 is interpreted as evidence against the
null hypothesis.

In 11 out of 15 cases our approach is closest to the mark. On two occasions GARCH
with conditional t innovations is best and on one occasion GARCH with conditional normal
innovations is best. In one further case our approach and the conditional t approach are
joint best. On no occasion does our approach fail (lead to rejection of the null hypothesis),
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whereas the conditional t approach fails twice and the conditional normal approach 11
times. Unconditional EVT fails three times. Figures 6 and 7 give some idea of how the
latter two methods fail. The conditional normal estimate of xt0:99 like the conditional
EVT estimate responds to changing volatility but tends to be violated rather more often,
because it does not take into account the leptokurtosis of the residuals. The unconditional
EVT estimate cannot respond quickly to changing volatility and tends to be violated
several times in a row in stress periods.

4 Expected Shortfall

The expected shortfall, as de�ned in Section 2, is an alternative risk measure to the
quantile which overcomes some of the theoretical de�ciencies of the latter; see Artzner,
Delbaen, Eber, and Heath (1999). In particular this risk measure gives some information
about the size of the potential losses given that a loss bigger than VaR has occurred. We
therefore expect this risk measure to be particularly sensitive with respect to the choice
of the model for the tail of the return distribution.

4.1 Estimation

We recall from (3) that the conditional (1{step) expected shortfall is given by

Stq = �t+1 + �t+1E [Z j Z > zq] :

To estimate this risk measure we require an estimate of the expected shortfall for the
innovation distribution E [Z j Z > zq]. For a random variable W with an exact GPD
distribution with parameters � < 1 and � it can be veri�ed that

E [W jW > w] =
w + �

1� �
; (12)

where � +w� > 0. Suppose that excesses over the threshold u have exactly this distribu-
tion, i.e. Z � u j Z > u � GPD(�; �). By noting that for zq > u we can write

Z � zq j Z > zq = (Z � u)� (zq � u) j (Z � u) > (zq � u);

it can be easily shown that

Z � zq j Z > zq � GPD(�; � + �(zq � u)); (13)

so that excesses over the higher threshold zq also have a GPD distribution with the same
shape parameter � but a di�erent scaling parameter. We can use (12) to get

E [Z j Z > zq] = zq

�
1

1� �
+

� � �u

(1� �)zq

�
: (14)

This is estimated in the obvious way by using the quantile estimator in (10) and replacing
� and � by GPD parameter estimates and u by z(k+1). This gives us the conditional
expected shortfall estimate

Ŝtq = �̂t+1 + �̂t+1ẑq

 
1

1� �̂k
+
�̂k � �̂kz(k+1)

(1� �̂k)ẑq

!
: (15)

11



4.2 Expected shortfall to quantile ratio for various distributions

From (3) we see that, for �t+1 small, the conditional one{step quantiles and shortfalls of
the return process are related by

Stq
xtq
�
Stq � �t+1

xtq � �t+1
=
E [Z j Z > zq]

zq
:

Thus the relationship is essentially determined by the ratio of shortfall to quantile for the
noise distribution.

It is instructive to compare (14) with the expected shortfall to quantile ratio in the
case when the innovation distribution FZ(z) is standard normal. In this case

E [Z j Z > zq] = �(zq); (16)

where �(x) = �(x)=(1 � �(x)) is the reciprocal of Mill's ratio and �(x) and �(x) are the
density and df of the standard normal distribution. Mill's ratio is available to high accu-
racy in most statistics packages. To get a feeling for the ratio we can use the asymptotic
expression

�(x) = x
�
1 + x�2 + o(x�2)

�
;

as x!1, from which it is clear that the expected shortfall to quantile ratio converges to
one as q ! 1. This can be compared with the limit in the GPD cases; for � > 0 the ratio
under the GPD assumption converges to (1 � �)�1 > 1 as q ! 1. For the kind of values
of q which interest us we note in passing that a good approximation to the reciprocal of

Mill's ratio is �(x) � x
�
1 + (

p
1 + 8=x2 � 1)=4

�
; see Johnson and Kotz (1970) for details.

In Table 3 we give values for E [Z j Z > zq] =zq, the expected shortfall to quantile ratio
for the innovation distribution, in both the GPD and normal cases. For the value of the
threshold u and the GPD parameters � and � we have taken the values obtained from our
analysis of the positive residuals from our test data (see Table 1). The table shows that
when the innovation distribution is heavy{tailed the expected shortfall to quantile ratio
is considerably larger than would be expected under an assumption of normality.

q 0.95 0.99 0.995 q ! 1

GPD 1.52 1.42 1.39 1.29
Normal 1.25 1.15 1.12 1.00

Table 3: Values of the expected shortfall to quantile ratio for various quantiles of the
noise distribution under two di�erent distributional assumptions. In the �rst row we
assume that excesses over the threshold u = 1:215 have an exact GPD distribution with
parameters � = 0:224 and � = 0:568 (see Table 1). In the second row we assume that the
innovation distribution is standard normal.

In the case of the scaled t{distribution, where FZ(z) = FT (z
p
�=(� � 2)), and T � t� ,

we can again derive an asymptotic formula

E [Z j Z > zq] = zq

�
�

� � 1

�
1 + o(��1)

��
; (17)

where zq =
p
(� � 2)=�F�1

T (q) as q ! 1. Thus the expected shortfall to quantile ratio
converges to �

��1 as q ! 1. As we have already remarked, the value of � in the limiting
GPD approximation to the excess distribution for a t{distribution with � degrees of free-
dom is 1=�, so that the asymptotic result (17) is clearly in line with (14). The results for
the t{distribution being similar to those for the GPD-approximation we concentrate on
GPD and normal tails in our analyses.
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4.3 Backtesting

In Figure 8 we have estimated the expected shortfalls Stq; q 2 f0:95; 0:99g, for the BMW
series under both the GPD tail assumption and the normal assumption for the innovation
distribution. We show the ratios of the GPD{based estimate to the normal estimate. In
all days in the backtest the calculated ratio was greater than one. For q = 0:95 the ratio
reaches values of around 1.2; for q = 0:99 the ratio reaches values of around 1.7. This ratio
is mainly driven by the estimated value of � in the GPD tail estimate, which is clear from
the form of (14). Although the conditional 0.95 quantile estimates derived under the GPD
and normal assumptions typically do not di�er greatly, we see that the same is not true
of estimates of the expected shortfall at this quantile. It is thus much more problematic
to base estimates of the conditional expected shortfall at even the 0.95 quantile on an
assumption of conditional normality when there is evidence that the residuals are heavy{
tailed.

We develop a test along similar lines to the binomial test of quantile violation to verify
that the GPD{based method gives much better estimates of the conditional expected
shortfall than the normal method for our datasets. This time we are interested in the
size of the discrepancy between Xt+1 and S

t
q in the event of quantile violation. We de�ne

residuals

Rt+1 =
Xt+1 � Stq

�t+1
= Zt+1 �E [Z j Z > zq] :

It is clear that under our model (1) these residuals are iid and that, conditional on�
Xt+1 > xtq

	
or equivalently fZt+1 > zqg, they have expected value zero.

It is also possible to standardize these residuals. If we take

R�
t+1 = Rt+1=

q
var(Z j Z > zq);

these residuals are iid and, conditional on quantile violation, have mean zero and variance
one. If we assume that Z � u j Z > u � GPD(�; �), then these residuals have a shifted
GPD distribution. With the help of (13) we can show that

var(Z j Z > zq) =
(� + �(zq � u))2

(1� �)2(1� 2�)
; (18)

for zq > u and � < 0:5. We also require an expression for this conditional variance when
Z has a normal distribution. In this case

var(Z j Z > zq) = 1 + zq�(zq)� �(zq)
2; (19)

where �(x) is again Mill's ratio.
Suppose we again backtest on days in the set T . We can form empirical versions

of these residuals on days on which xt+1 > xtq. We will call these residuals exceedance
residuals and denote them by

�
r�t+1 : t 2 T; xt+1 > x̂tq

	
; where r�t+1 =

xt+1 � Ŝtq

�̂t+1
pcvar(Z j Z > zq)

:

Here Ŝtq is an estimate of the shortfall and cvar(Z j Z > zq) is an estimate of the variance of

the noise distribution truncated at zq. Under the GPD assumption we reestimate Ŝtq andcvar(Z j Z > zq) every day with the help of (15) and (18). Under the normal assumption
we use (16) and (19).

Under the null hypothesis that the dynamics in (1) and our distributional assumption
for the tail of the noise distribution are correct, the exceedance residuals should behave
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like an iid sample with mean zero and variance one. In Figure 9 we see these standardized
exceedance residuals for the BMW series and q = 0:95. Clearly for the normal residuals
the null hypothesis seems doubtful.

We are particularly interested in the hypothesis of mean zero and we use a bootstrap
test which makes no assumption about the underlying distribution of the residuals (see
page 224 of Efron and Tibshirani (1993)). This can be applied to either the standardised
or unstandardised residuals with similar results. The residuals derived from an assumption
of normality always fail the test with p{values in all cases much less than 0.01; the GPD{
based residuals are much more plausibly mean zero. In the following Table 4 we give
p-values for the test applied to the standardized GPD residuals for all �ve test series and
various values of q. The most problematic series is the S&P series and the null hypothesis
is rejected here for all q values (at the 5% level). The null hypothesis is also rejected
for the DAX series and q = 0:995, but in all other cases it is not rejected. Clearly the
expected shortfall is much better estimated under the GPD assumption but, particularly
for the indices, there is still some tendency to underestimate. We can conclude that an
assumption of conditional normality is useless for the purposes of calculating expected
shortfall.

q 0.95 0.99 0.995

S & P 0.04 0.01 0.01
DAX 0.05 0.05 0.03
BMW 0.22 0.05 0.08
USD.GBP 0.23 0.17 0.29
Gold 0.20 0.08 0.13

Table 4: p-values for a one-sided bootstrap test of the hypothesis that the standardised
exceedance residuals in the GPD case have mean zero against the alternative that the
mean is greater than zero.

5 Multiple Day Returns

In this section we consider estimates of xtq(k) for k > 1. Among other reasons, this is
of interest, if we want to obtain an estimate of the 10-day VaR (as required by the BIS-
rule) from a model �tted to daily data. For GARCH-models FXt+1+:::+Xt+kjGt(x) is not
known analytically even for a known distribution of the innovation series, so we adopt
a simulation approach to obtaining these estimates as follows. Working with the last n
negative log returns we �t as before the AR(1){GARCH(1,1) model and this time we
estimate both tails of the innovation distribution FZ(z).

We simulate noise from this distribution by a combination of bootstrap and simulation
from the GPD according to the following algorithm proposed independently by Danielsson
and de Vries (1997b).

1. Randomly select a residual from the sample of n residuals.

2. If the residual exceeds z(k+1) sample a GPD(�
(1)
k ,�

(1)
k ) distributed excess y1 from the

right tail and return z(k+1) + y1.

3. If the residual is less than z(n�k) sample a GPD(�
(2)
k ,�

(2)
k ) distributed excess y2 from

the left tail and return z(n�k) � y2.

4. Otherwise return the residual itself.
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5. Replace residual in sample and repeat.

This gives points from the distribution

F̂Z(z) =

8>>>>>><>>>>>>:

k
n

�
1 + �

(2)
k

jz�z(n�k)j

�
(2)
k

��1=�(2)
k

if z < z(n�k)

1
n

Pn
i=1 1fzi�zg if z(n�k) � z � z(k+1)

1� k
n

�
1 + �

(1)
k

z�z(k+1)

�
(1)
k

��1=�(1)
k

if z > z(k+1);

which approximates FZ(z) for n large.
Using this noise distribution and the �tted GARCH model we simulate 10000 future

paths (xt+1; : : : ; xt+k) and calculate the corresponding cumulative sums which are real-
isations of

Pk
j=1Xt+j j Gt. We use these realisations to calculate xtq(k). With 10000

simulated paths the sample quantile is a reasonable estimator for q � 0:99.
We are interested in the ratio xtq(k)=x

t
q for k > 1, i.e. we want to know how we have

to scale a conditional quantile estimate for one-day returns in order to obtain an estimate
for the same conditional quantile of k-day returns.

If the Xi are iid some theoretical results on the appropriate scaling factor are available.

For strictly stable distributions where X1 + : : :+Xk
d
= k1=�X1 for some � 2 (0; 2] we get

that xq(k)=xq = k1=�; in the special case of the normal distribution where � = 2 we get
the famous \square-root of time rule" implemented in RiskMetrics. Next consider the
case of iid random variables Xi with heavy-tailed distribution function FX satisfying (11).
Feller (1970), Chapter VIII.8 proved that for x!1

(x�1=�kL(x))�1P [X1 + : : :+Xk > x]! 1 :

Hence we obtain the following approximative4 scaling law for \large" quantiles

xq(k)=xq � k� : (20)

In view of these theoretical results we conjecture that for small k in our setup the
scaling factor xtq(k)=x

t
q can be approximated by a power function, i.e.

xtq(k)=x
t
q � k�t ; (21)

however we expect �t to depend on the initial volatility �t. For k !1 a scaling factor of
k1=2 should be appropriate, as under some technical conditions the central limit theorem
holds for a strictly stationary GARCH-model with �1 + � < 1. To test this conjecture
we �tted a GARCH(1,1) model to the excerpt form the S&P index containing the crash
and we used our simulation algorithm to compute xtq(k) for k = 1; 2; : : : ; 50 and three
di�erent initial values of �t: \high"; \average"; and \low".5 We found that the power
scaling law (21) holds almost perfectly; see Figure 10 for an example. Table 5 gives the
estimated values �t for the three di�erent values of �t. We see that for the higher than
average value of �t the exponent �t is lower than for the average value of �t, whereas for
the lower than average value of �t the exponent �t is higher. In view of the stationarity
of the volatility process this appears very natural: if the initial value �t is high (low) the
future volatility will on average be lower (higher) than �t, such that the quantile xtq(k)
increases relatively slowly (relatively fast) in k.

4Note that for � < 2 stable laws are fat-tailed with tail index �; by de�nition the approximative
scaling-law (20) is exact for these distributions.

5The average volatility was taken to be the median of �t�n+1; �t�n+2; : : : �t; the high volatility corre-
sponds to the 95% quantile of the observed values of �t�n+1; �t�n+2; : : : �t, the low volatility to the 5%
quantile.
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0.95 0.99

low volatility 0.65 0.65
average volatility 0.60 0.59
high volatility 0.48 0.47

Table 5: Values for the exponent �t of the scaling law (21) for di�erent initial volatilities.

Based on the scaling law (20) for iid series Danielsson and de Vries (1997b) advocate the
use of the scaling factor k1=� when computing the k-day VaR from models �tted to daily
data (\k1=�-rule"). Here � = 1=� is the tail index of the marginal distribution FX of the
asset returns introduced in Section 2.2. They do not test this claim empirically. Our results
cast some doubts on their \k1=�-rule": our example suggests that in stationary models with
stochastic volatility structure we should expect a scaling factor that depends on the level
of the current volatility relative to the long-term volatility mean. Hence a \universal"
scaling law is unlikely to prevail for most �nancial return series. Moreover, we cannot
con�rm the conclusion of Danielsson, Hartmann, and de Vries (1998) who claim that \the
square root of time formula may lead to an overestimation of VaR when returns are not
normally distributed and exhibit fat tails." Our scaling factors are even slightly greater
than those obtained by means of the square root of time formula. These �ndings illustrate
again, that approaches to tail estimation which ignore the conditional heteroscedasticity
exhibited by most �nancial return series are not suitable for VaR calculation.

6 Conclusion

The present paper is concerned with tail estimation for �nancial return series and, in
particular, the estimation of measures of market risk such as value at risk (VaR) or
the expected shortfall. We �t GARCH{models to return data using pseudo maximum
likelihood and use a GPD-approximation suggested by extreme value theory to model the
tail of the distribution of the innovations. This approach is compared to various other
methods for tail estimation for �nancial data. Our main �ndings can be summarized as
follows.

� We �nd that a conditional approach that models the conditional distribution of asset
returns against the current volatility background is better suited for VaR estimation
than an unconditional approach that tries to estimate the marginal distribution of
the process generating the returns. The conditional approach is vindicated by the
very satisfying overall performance of our method in various backtesting experi-
ments.

� The distribution of the residuals is found to be often leptokurtic. As an \ad-hoc
approach" the innovations can be modeled by a t-distribution where the degree-of-
freedom parameter is estimated with Maximum Likelihood. This approach works
quite well for return series with symmetric tails but fails when the tails are asym-
metric. We �nd the GPD-approximation to be preferable, because it can deal with
asymmetries in the tails. Moreover, this method is based on a sound theoretical
theory.

� We advocate the expected shortfall as an alternative risk measure with good theo-
retical properties. This risk measure is easy to estimate in our model. A comparison
of estimates for the expected shortfall using our approach and a standard GARCH-
model with normal innovations shows again that the innovation distribution should
be modelled by a fat-tailed distribution, preferably using EVT.
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In practice, VaR estimation is often concerned with multivariate return series. We are
optimistic that our \two-stage-method" can be extended to multivariate series. However,
a detailed analysis of this question is left for future research.
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Figure 1: 1000 day excerpt from series of negative log returns on Standard & Poors index
containing crash of 1987; lower plot shows estimate of the conditional standard deviation
derived from PML �tting of AR(1){GARCH(1,1) model
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Figure 2: Correlograms for the raw data and their squared values as well as for the
residuals and squared residuals. While the raw data are clearly not iid, this assumption
may be tenable for the residuals.
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Figure 3: Quantile-quantile plot of residuals against the normal distribution shows resid-
uals to be leptokurtotic.
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Figure 4: GPD tail estimates for both tails of the innovations distribution. The points
show the empirical distribution of the residuals and the solid lines represent the tail
estimates. Also shown are the df of the standard normal distribution (dashed) and the
df of the t{distribution (dotted) with degrees of freedom as estimated in an AR(1){
GARCH(1,1) model with t{innovations.
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Figure 5: Three years of the DAX backtest beginning in October 1987 and showing the
EVT conditional quantile estimate x̂t0:99 (dashed line) and the EVT unconditional quantile
estimate x̂0:99 (dotted line) superimposed on the negative log returns. The conditional
EVT estimate clearly responds quickly to the high violatility around the 1987 stock market
crash.
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Figure 6: Violations of x̂t0:99 and x̂0:99 corresponding to the backtest in Figure 5. Tri-
angles, circles and squares denote violations of the conditional normal, conditional EVT
and unconditional EVT estimates respectively. The conditional normal estimate like the
conditional EVT estimate responds to changing volatility but tends to be violated rather
more often, because it does not take into account the leptokurtosis of the residuals. The
unconditional EVT estimate cannot respond quickly to changing volatility and tends to
be violated several times in a row in stress periods.
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Figure 7: Enlarged section of Figure 6 corresponding to the crash of 1987. Triangles,
circles and squares denote violations of the conditional normal, conditional EVT and
unconditional EVT estimates respectively. The dotted line shows the path of the uncon-
ditional EVT estimate, the dashed line shows the path of the conditional EVT estimate
and the long dashed line shows the conditional normal estimate.
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Figure 8: Ratio of expected shortfall calculated with GPD tail estimator to expected
shortfall calculated under conditional normality assumption for the BMW data series.
Top graph shows calculations for St0:95 and middle graph those for St0:99. Lower graph
shows � value used to construct GPD tail estimate.
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Figure 9: Standardized exceedance residuals for the BMW series and q = 0:95. Under the
null hypothesis that the dynamics in (1) are correct and that the distributional assumption
above the graph is correct, these should have mean zero and variance one. The right graph
shows clear evidence against the conditional normality assumption; the left graph shows
the assumption of a conditional GPD tail is more reasonable.
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Figure 10: Demonstration of power scaling for the conditional 95% quantile of the k day
return for a high value of the current volatility. Slope of the left hand graph is �t
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