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Credit Risk Modeling: A General Framework

ABSTRACT

Thetwo well-known gpproaches for credit risk modeling, structural and reduced form approaches, have
their advantages and disadvantages. Dueto the fundamentally different assumptions of the two
approaches, the structural models are used for default prediction that focuses on equity prices and reduced
form models are used for credit derivatives pricing that focuses on debt values. In this paper, viaasimple
discrete binomial structure, we provide a unified view of the two approaches. In particular, in our
formulation, the pricing formulas for risky debts are identical under the two gpproaches. The two
approaches differ in only the recovery assumption. Thisresult makes comparison of various models
empirically possible. We demongtrate, in acredit derivative example that is sensitive to the recovery

assumption, how different recovery assumptions impact its prices.



Credit Risk Modeling: A General Framework

1 INTRODUCTION

There have been two well-known approaches, structural and reduced form, for credit risk modeling.
Reduced form models, represented by Jarrow and Turnbull (1995) and Duffie and Singleton (1997, 1999)
assume defaults (or credit events) occur exogenously (usually by a Poisson process) and a separately
specified recovery is paid upon default.’ Structural models, on the other hand, assume defaults occur when
the vaue of the firm falls below a certain default point and a certain recovery ispaid. The “true structural”
model of Geske (1977) and Geske and Johnson (1984) assumes the default point to be the market value of
debt that is endogenously computed and the firm value isthe recovery. This formulation leads to multi-
variate probability functions. The “barrier structural” models, pioneered by Black and Cox (1976), obtain
uni-variate valuation formulas by assuming an exogenous default point and an exogenous recovery
amount.?

Structural models for credit risk modeling have been mainly used for default prediction® or capita
structure analysis while reduced form models are mainly used by investment banksto price credit
derivatives.* Thisisbecause structural modelsrely on the information from equity prices while reduced
form models from debt prices. Furthermore, reduced form models are more computationally efficient due
to their exogenous default and recovery assumptions, which are important for pricing credit derivatives.
Another reason for the reduced form modelsto be chosen by investment banksisitsrelative ease to
incorporate the term structure of the default free interest rates.

In this paper, we clarify the difference between the “true structural” model of Geske (1977) and
Gseke and Johnson (1984) in which defaults occur when the (market) value of the firm falls below the
(market) value of debt and the “barrier structural mode” in which defaults occur when the value of the firm
crosses an exogenously pre-defined barrier. The former vauation leads to multi-variate distributions while
the latter isaunivariate valuation.® We then show that reduced-form and structural models can be made
consistent under asimple discrete binomial formulation. Under thisbinomia formulation, the two sets of

models have identica pricing formulas for risky debts. The only difference is different recovery

! Other reduced form models include, among others, Duffie and Lando (1997), Jarrow, Lando, and
Turnbull (1997), Jarrow and Y u (2001), Lando (1998), Madan and Unal (2000), and Schénbucher (1998).
2 Other structural modelsinclude, for example, Anderson and Sundaresan (1996), Leland and Toft (1996),
Longstaff and Schwartz (1995), Zhou (2001), and Bélanger, Shreve, and Wong (2002). Readers can also
find a more thorough survey by Uhrig-Homburg (2002).

3 For example, see KMV’s EDF and Moody’s RiskCalc.

* It should be noted that structural models are also proposed for pricing risky bonds. However, they have
never gained support from the industry due to the difficulty in calibration.

® The two most known reduced form models by Jarrow and Turnbull (1995) and Duffie and Singleton
(1999) can both be easily incorporated into existing term structure models.

© Bdlanger, Shreve, and Wong (2002) provide aunified model that nests all barrier structural models. This
paper can be viewed as an extension of their work.



assumptions. Thisresult makesit possible to compare various models. In an application, we use credit
default swapsto examine theimpact of different recovery assumptions.

Theremaining of the paper isorganized as follows. Section 2 lays out the basic valuation
equations. In particular, we specify the forward measure technique to incorporate stochastic interest rates.
Section 3 presents the binomial framework under which all models share the same valuation formula. In
Section 4, we discuss calibration issues of various models and perform model comparison. Section 5 uses
the model s discussed to value the most popular credit derivative contract — default swaps. Finaly, the
paper is concluded in Section 6.

2.BASIC SETUP’

Define a T-maturity default-free pure discount bond price at current timet, denoted P(t,T) with
P(T,T)=1foral T. Alsodefineasetof dates: 0=T, <T; < <Ty_; <Ty. For simplicity and without
lossof generality, we also assume h=T, =T, foral i=1, ,N. Let /(T;,T;), 0<i< <N, represent
the default free “term” interest rate (annualized) over [T;,T;]. Hence, by definition:

1 1)

Q) ﬂ(TnTj):TjT\P(TwTJ’) _1J

Denote by Q therisk neutral measure under which defined the instantaneous short rate r. Then we have:
@  PET)=ESIAGT)]

where

At,s) = exp(—JtS r(u)du), 0<t<s<T,and

EtQ[[j] represents the expectation conditional on the information set at time t under the risk neutral measure
Q.
For the sake of convenience, we further define T,, -forward measure, denoted by Fi, to be

equivalent to the measure @ and the corresponding Radon-Nikodym derivative is given by:®

drF, AR T,)

3 4Q  P@,T,)

" This section and part of the next section originally derived in Chen and Huang (2001).
8 For the forward measure, see, for example, Jamshidian (1987) and Hull (2000).



Under (3) the forward priceis merely the forward expectation of the bond price:

o rmoima 563

and s0 is the discrete forward rate;

(5) ER[A(u,th] = ——— -1
F(O,u,t)

Finally, we reiterate the separation of expectation using the forward measure:

ESTAO.D)l1<n] = ESTAQ DIEG 11 ]

(6)
= P(0,1)Q(0,1)

where risthe default time and:
(M Q1) =Eg[ljen]

as the survival probability under the forward measure where |y is an indicator function and 7is the default
time. Equation (6) represents the present of $1 paid if there is no default and 0 otherwise. Hence, it is also

known as the risky discount factor.

3 THE UNIFIED FRAMEWORK

Theunified model is asimple binomial mode that defines default and no default states at every period.
Thismodel is general to accommodate any form of recovery upon default and any form of cash flows under

no default.

default
default
default

no default

Hence, their solution to the risky fixed rate coupon bond can be written as:



5 VO™ 2 AOT oy + AOT, ) oy A2, (AT F D ey |
=2, POT)QEO,T)c,h+P(0,T,)Q0,T,) +R,(0)

where c,, isthefixed coupon, w, (CI}, which is a function of some state variable A and interest rater,
represents the recovery amount upon default, and R, (0) isthe current value of expected recovery. Note
that the first two terms of the second line follows directly form (6) and (7). They represent the value of
coupons and face vaue. The last term represents the current recover value, which is an expected present
vaue of the recovery amount upon default, a function of some state variable(s), A and therisk free interest
rate, r.

Chen and Huang (2001) were the first to make the observation that the binomial processisthe
general framework to incorporate al credit risk models. As aresult, they can use (8) to derive genera
upper and lower bounds for credit spreads.’” However, they still take recovery as exogenously given. In
this paper, we focus on the models that have endogenous recovery. In particular, we study the Geske
model (1977) that has an endogenous recovery process. We compare the Geske model with other structural
models and reduced form models by using the binomial default process given above. The binomial default
process alows us to compare various models via only the recovery assumptions made by various models.

Thebinomial default process assumes that defaults can occur only at discrete points (i.e. coupon
payment times). Thisis not unreasonable because usually companies do not have to declare default unless
they fail apayment of interest or the solvency test by regulators or creditors, both of which happenin
discretetime. So far, we have not used any model specification. The remainder of this section presents

V(0,T,) invarious model specifications.

A. The Jarrow-Turnbull Mode

The discrete binomia model is most straightforward to explain the Jarrow-Turnbull model because both
default event and recovery are exogenously specified in the mdoe. The Jarrow-Turnbull model assumes
that afixed recovery ispaid a maturity regardless of the time of default. Hence, the closed form solution

exists for the coupon bond as follows:

®  Vx(©T)=2" POT)QOT)cyh+POT)QA0.T,)+w,PO.T,)L-QO,T,)]

® Chen and Huang (2001) aso present the pricing formula for the floating rate bond. Since the difference
between fixed and floating rate bondsis only due to the coupon, we focus on the fixed rate bond in this

paper.



Insuchacase, R,(0)=w,P(0,T,)[1-Q(0,T,)]. Thismodd is also recognized as “recovery of
proportiona to par”. In the Jarrow-Turnbull model, default events are assumed to follow a Poisson process

that gives the survival probability:*

g

t
(100 QO =E} Lexp -] Awda
L0

)l
J

where A(t) representsthe hazard rate (intensity) of the Poisson process. Default occurs when thereisa
jump with aprobability A(t)dt over the period dt.
An extended Jarrow-Turnbull model of the following is usually used in the industry in which

defaults are allowed only at coupon times and a fixed recovery is paid upon default.
(1) Vp(©T,)=2." POT)QOT)ch+PO,T,)Q0.T,) +w, (T )PO,T)QO, Tit) ~QO,T))]

Insuchacase, R,(0) ==L, w, (T;)P(0, T;)[Q(0,T;;) —Q(0,T,)] . In many cases, continuous default is
necessary, hence a continuous version of recovery is aso commonly used:
R (0) =g w, ()P(0,)[~dQ(O,1)]

B. The Duffie-Singleton Model

Like the Jarrow-Turnbull model, the Duffie-Singleton model also assumes a Poisson process for defaults.
Unlike the Jarrow-Turnbull model, the Duffie-Singleton model assumes that recovery is paid immediately
upon default and equals a fraction of what the bond isworth immediately prior to default. In our

formulation, it means:
(12)  w,(®)=dv(,T,)

where Jis the constant recovery ratio on the value of the bond prior to default. Substituting this result back

to (8), we get:

(13)  Vps(0,T,) = Zi”ﬂ P(0,T,)Q" (0, T))c,h+P(0,T,)Q" (0,T,)

19f the hazard rate, A, is adeterministic function, then the forward-measured-adjusted expectation reduces
to exp(—JE) A(u)du) . If Aisstochastic, then we should follow Lando (1998) and the standard forward
measure technique to find the solution to the expectation. Under this situation, it is not clear that there will
be aclosed form solution to this expectation if the interest rate process and the hazard rate process are not
Gaussian.



where c,, isthe fixed coupon and

(14) Q(0.T)= EE Le—(l—g)Jg At I =Q(O,T )+

It can be seen that the Duffie-Singleton modd cannot differentiate the survival probability from the
recovery, adrawback of the model. However, the solution represented by (13) and (14) isaclosed form
solution of the affine style, more easily to derive closed form solutions when the recovery ratio and the
intensity parameter are random.

It is clear that in the Duffie-Singleton model, recovery is blended into survival probabilities. In
other words, recovery in the Duffie-Singleton model contains survival probabilities. Formally, we can

write recovery as;

(15  R(©@=2" POT)QOT)MOT)-1c,h+POT,)QA0T,)MEOT,)-1

where

M (0,t) = EF Le‘”‘o“Wd“J and

dF, e—Jgi A(t)dt
df  QO.T)

C. The Extended Merton (Barrier Structural) Model

The structural models can be traced back to Black and Scholes (1973) and Merton (1974) who observe that
the company’s equity is a European call option and hence the single-maturity-date debt contains default
risk identica to a covered call. Therecovery in the Black-Scholes-Merton model is therefore the firm
valueif default occurs at maturity. To extend the single period model of Black-Scholes and Merton, as
mentioned earlier, there are two approaches. The “barrier structural” models assume an exogenous default
barrier. Default is defined as the asset value crossing such a barrier.** The extension along this is
pioneered by Black and Cox (1976), followed by Leland and Toft (1996) and Longstaff and Schwartz
(1995), and recently extended by Bélanger, Shreve, and Wong (2002). Another is a“pure structural”
model by Geske (1977) and Geske and Johnson (1984) who adopt the compound option approach and treat
default as the inability of the company to fulfill its debt obligations (i.e. negative equity vaue).

" The barrier-based structural models are particularly popular in industry. See, for example, KMV
(recently acquired by Moody’s) and CreditGrades.



In this sub-section, we include multi-period debt structure in the Merton model. We assume
defaults occur if the firm fails to meet its coupon obligations at any give time. Since the coupon
obligations are exogenously given, the “barrier structural” models can be viewed as the continuous time
limit of what is described here.

Consistent with our discrete setup, let X;, ,X,, betheseries of external barriers, crossing which
by the firm value represents default. These discrete time barriers can be interpreted as cash obligations at
each time and failure to make the obligation resultsin default of the firm. These cash obligations can be
regarded as a series of zero coupon bonds issued by the firm. The values of assets and debts (zero coupon)
arelabeled as A(t) ,and D(t,T,) respectively for an arbitrary t. Default isdefinedas A(T;) < X; at time
T, . To obtain closed form solutions, we assume the continuity of A(t) , asby Geske (1977) and Geske and
Johnson (1984). To arrive at closed form results, we need to assume alog normal process for the firm's

asset value and anormal process for the instantaneous short rate:

dA(t) |
o [5810 0L e
Lar( | (r t)l 0 ol| o 1 | [dw )]

where g5, 0, ,and p,, arecongants,and dWsSdW, = 0. From (16), we know that the correlation
between the (log) asset value and the interest rateis p,, . Also note that both W (t) and W= (t) are
independent Wiener processes under the & measure. Applying Ito’slemmato (2) in Section 2, we obtain
that:

dPUT) 1 |P(T) o 10°PLT) o OP(T) s L OPGT)

(17) PtT) PT)| or 2 o2 T ot | PtT) or
=r(t)dt+op (r,t, T)AWS (t)

o, dW (1)

The Gaussian models that satisfy (17) are Vasicek (1977), Ho and Lee (1986), and Hull and White (1990),
in all of which the diffusion term, o (r,t,T), isindependent of the interest rate and can be written as
op(t,T).

Then, we can derive the value of T, -maturity debt is:
D(0.T,) = EG[AQ.T,) min{ X, AT, )}]

(18) = P(0,T,)Eg" [min{ X, A(T,)}] n>1
=P(0,T,) XN, + AQ)(N;1 -N)

where



N7 =N;(hi (Xy), hi(X;); oK)

Pik =4 Ti [T, Oi<k<j

A(0) 1.,2
n POT)X. tov (0,T,)

v(O,T;)

h*(X;) =

T
V(OT) =] 03+03(UT)~20x 0200 (,T)du
0

where o, represents the auto-correlation between In A(T;) and In A(T, ) whichis m for T, <T,.
The derivation of (18) isgiven in an appendix. In(18), N;( ) isaj-dimensional cumulative normal
probability.? The derivation of (18) isgiven in an appendix that both N, and N, are probabilities being
in the money, only defined in different probability measures.

Equation (18) has an interesting interpretation. Notethat N, isthe survival probability from now
till T, (=Q(0,T,,)) and N,_; =N, (or N;_; =N, under adifferent measure) is the unconditional defauilt
probability between T,; and T,. Inother words, (18) impliesthat if default does not happen (with
probability N, ), thebond receives X,,. If default does happen, it receives A(T,,) . Note that any prior
default (default before T,,_; ) should pay no recovery for such abond sinceit is the most junior bond and
the last to receive recovery. And this recovery is multiplied by the default probability and discounted to be
AO)(Nj_, ~N}) today (= R, (0)).

It should be noted that (18) is not a closed form result unless v(0, T;) has aclosed form
expression. Rabinovitch (1989) showsthat a closed form expression for v(0,T;) existsif the term
structure model follows Vasicek (1977) and does not exist if it follows Cox-Ingersoll-Ross (1985). We
restate the closed form result of Rabinovitch in an appendix.

The T,, -maturity coupon bond that pays hc,, as coupons can be regarded as the total debt of the
firmif X, =hc, fori=1,...,n-1and X, =1+hc, whereh isdefined in (18), asthetime period length:

Veu(0T,)=2." D(OT)
(19) = AOL-N1+2." POT XN

=R,(0)+ 2. P(0,T))Q0,T)hc, +P(0.T,)Q(0,T,)

where the forward survival probability notation Q(t,T;) replaces multi-variate normal probébilities N;
Equation (19) resembles (8) remarkably. Theonly differenceisthe recovery assumption. Note that the

firstterm 1-N,, represents the total unconditional default probability (under a different measure).

2 Equations (17) and (18) are consistent with Vasicek (1977), but not Cox, Ingersoll, and Ross (1985).



The extended Merton modd is usually categorized as a structural model, because of its
endogenous recovery assumption and the use of asset value. However, default is defined as the asset value
crossing an external barrier. This could cause negative equity value. To see that, we can look at the

payoffsat time T,_; :

D(Th1:Th1) = Xy

A(Tn—l) > Xn—l = { D(Tn—llTn) = P(Tn—ll-l—n)Erf—l[mi n{ A(Tn)1 Xn}]
E(Tn—l) = P(Tn—l'Tn)Erf—l[maX{ A(Tn) - Xn O - Xn—l
D(Th1: Ta) = A(T1)

AT )X,y = { D(T,4.T,)=0
E(Th41) =0

When A(T,_;) issmall, thereisno guarantee that the equity value, E(T,_;), canexceed X,; since X, _;
can be arbitrary. To keep the continuity assumption of the asset value at time T,,_;, we need to issue new
equity when it isnegative. In other words, we alow the company to raise new equity when it is dready in
bankruptcy. Clearly thisisnot possiblein redity. There are three approaches to avoid such a problem.
Thefirst isto set the default boundary not for asset, but for equity. That is, let default be the equity value
less than the coupon payment, i.e. E(T,_;) < X,,_;, instead of asset value less than the coupon payment.
Thisis the Geske-Johnson model that wewill discussin the next sub-section. Second, we should trest the
underlying asset as an unobservable state variable and specify recover value separately (e.g. Longstaff and
Schwartz (1995) and Zhou (2001)). But doing so effectively transforms the structural model into reduced
form in that both defaults and recovery are exogenously specified. It differs only slightly from the reduce
form approach by different default processes, one assumes a Poisson process and the other assumes a
diffusion variable crossing a barrier. Third, we can simplify the debt structure so that an endogenous
barrier can be solved (e.g. Leland (1994) and Leland and Toft (1996)).

D. The Geske-Johnson Model

Themost direct extension of the Black-Scholes-Merton mode is Geske's compound option model (1977).
The compound option model provides an exact match between a compound option (option on option) and
the equity value of a company with multiple debts. For a company with multiple debts, the survival of the
company represents a series of nested call options, identical to a compound option. As aresult, the true
structural model of Geske (1977) and Geske and Johnson (1984) need to solve for internal strikes.



We extend the Geske-Johnson modd of an n period risky debt to incorporate random interest

rates.”® ** The T,, -maturity zero coupon bond can be written as follows.

DOT) =2, POTIXIN (K, Kin) =17 (King, Kipoo)]
+ A(O)[rl ;—1(K1n—11 , Kn—ln—1) -n ; (K1n1 J Knn)]

(20)

where®

00 00

M2 (K Koy, ,Ki,-)=J' J N, (B (K (D) P, (1), BE (K (0D (), 1 (T), 1 (T))
e e dr(T)dr(T,), ,dr(T)

forn=j=iwhere ¢ isthejoint density function of various interest rate levels observed at different times
under the forward measure. Note that hji(Kij) ,fori <j, istopluginto (18) Kj; for thestrikeand Kj is

theinternal solution to:*®
(21) E(M) =X,

which isafunction of theinterest rate at time T;, and K;; = X;. All strikesare solved internally. Note

that since interest rates are random, the internally solved strike, K, , is afunction of r under the forward

j [l
measure. |f interest rates are deterministic, then M = N;( ) the standard multi-variate normal
probability function. If we assume that default points are equal to cash obligations, i.e. Ky = X; for alj,
then M =N; defined in (18).

Although each bond is computed by a complicated formula, the coupon bond is not:

3 The formulas provided by Geske (1977) are incorrect and corrected by Geske and Johnson (1984).
However, Geske and Johnson only present formulas for n = 2. Here, we generalize their formulas to an
arbitrary n.

14 ater on, for calibration, we aso augment the model to include non-constant volatility.

> Note that the implementation of (20) does not need multi-variate integrals. The easiest way to implement
it isto construct a bi-variate lattice. Eom, Helweg, and Huang (2002), for example, use a one-dimension
binomial model to implement the deterministic Geske-Johnson model.

16 Or dlternatively, it can be written as:

AT)=D)  D(TT)*X,
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Vo (0T,)=2." DO.T)
(22) = AL} (Kin, Kan, K1+ 220 POT)XM (Kyny Kip)

=R,(0+2." P(O,T))Q(,T)hc, +P(0.T,)Q(0,T,)

where X; =hc, fori <nand X; =1+c,h fori=n. Thisequation is extremely similar to (19) except that
the probabilities are defined differently due to different strikes. Hence, by observation, the recovery must
be R,(0) = AQ)[1-M, (Ky, Kons  »Kpn)]. Weshould note that the Geske-Johnson mode satisfies the
condition Q(0,T;) >Q(0, T;,;)

Noteagainthat M, (Ky,, Koy, Kpy,) isthetotal survival probability (under the forward
measure) because the asset value, A(t) needsto stay above its default boundaries, Kj; at all times. Hence,
the total (cumulative) default probability is [1-T (K4, Kon, L Kin)] - Toseeit, weknow that the total
default probability can be derived directly from summing the default probability of each period:

K o Ko © 0o Kpy
f¢(A1)dA_L+J | s apaman+ | | [ oA A oA
Ky O Kin Kpen O

00 00

23 =1-] | J’ B(AL ANA,  dA

Kln Kn—ln Knn
=1-M,(Kyy, Kin)

where A = A(T;) isashort-hand notation. Thisisanalogous to Jg —dQ(t) =1-Q(T) . Therecoveryisto

consider the cash amount received upon default;

K o K

PO.T) | Ad(A)IA +POT,) | | Ad(a, Ay)dAdA +
0 Ky O
oo o Kp
01| | | Agan AN, da
(24) Kin Kn—ln 0

00 00

. |
=nlt- || | eran a)dA, dA1|

Kln Kn—ln Knn

=Agll-M7(Ky, Kyl

The change of measure can be found in an appendix.
In this unified framework, we can see that the difference in the Geske-Johnson model differs from
Jarrow-Turnbull model is that Jarrow and Turnbull assume a fixed recovery value at maturity while Geske

and Johnson assume a fixed recovery value a current time.

11



4. CALIBRATION AND MODEL COMPARISON

In this section, we demonstrate how different models can calibrate to the same market data and imply
different parameter values. Equation (8) represents a general formula for al risky bond pricing models,
reduced form and structural modelsincluded. It is seen that the difference only liesin the recovery
assumption: recovery of the face value yields the Jarrow-Turnbull model; recovery of the market value
yields the Duffie-Singleton model, and recovery of the asset vaue yields the extended Merton and the
Geske-Johnson mode!.

We shall first use a two-period model as an exampleto demonstrate the computationa details.
Then we provide analysisin amulti-period setting. The Vasicek model (1977) for the risk free term

structure of interest ratesis considered.

A. A Two-Period Example

We need three pieces of information to complete the calibration: risk free zero yield curve, aset of risky
bond prices, and arecovery assumption. Inthe case of structural models, the recovery assumption is
replaced by the volatility curve for the set of bond prices.

To demonstrate the calibration procedures for both reduced form and structural models, we use a

two-period example. The following table describes the base case:

time 1 2
coupon 10 10
face 100 100
bond price 100 100
yield curve 5% 5%

The Jarrow-Turnbull model can be calibrated as follows. From (11), we obtain the one year bond formula:
Vyr (01) = P(O)[QOD (A +c,) +(1-Q0.D))w, ]

We assume a fixed recovery rate of 0.4 of the principa and accrued interest. In thisone-year example, the
recovery amount is $44 if default occurs. Given coupon ¢; = $10/$100=10% and one-year discount
P(01) = ™% = 0.9512, we can solve for the surviva probability to be Q(0,1) = 0.9262. Again, from
(11), for the two-year bond:

Vir (0,2) = P(0)Q(01)c, + P(0,2)Q(0.2)(A+¢,) + P(OD[1-Q(0.D]w;, + P(0,2)[Q(0.1) - Q(0,2)]w,

With the knowledge of Q(0,1) , together with P(0,2) = e °* =0.9048, we can then solve for the second
period surviva probability to be Q(0,2) =0.8578.

12



The Duffie-Singleton model can be calibrated as follows. From (13), we have:

Vps(02) = P(0)Q (0)(1+c;)

for the one-year bond and

Vps(0,2) = P(0)Q” (0)c, + P(0,2)Q" (0,2)(1+c,)

for the two-year bond. Hence, we solve for Q" (0,)) =0.9557 and Q" (0,2) = 0.9134. From (14), we know
that Q" (0,t) > Q(0,t) alwaysdue to non-negative recovery. By assuming arecovery rate of 0.4, we get
Q(0,1) =0.8929 and Q(0,2) =0.7973, which are both lower than the survival probabilities calculated by
the Jarrow-Turnbull model. Note that in both models, the recovery present values for one and two-year
bonds are 3.09 and 5.81 for Jarrow-Turnbull and 6.57 and 12.15 for Duffie-Singleton, respectively. Itis
seen that the recovery amounts for Duffie-Singleton are higher, and hence to maintain the same the bond
values, the survival (default) probabilities of Duffie-Singleton have to be lower (higher) to balance out.

In both the Jarrow-Turnbull model and the Duffie-Singleton model, given that there is no other
random factor other than the interest rate, thereis no need to identify a specific term structure model, given
that surviva and default probabilities are computed under the forward measure. However, in the Geske-
Johnson modedl, in addition to random interest rates, there is arandom “ asset price’ statevariable. Asa
result, a specific term structure model needs to be specified in order to carry out survival and default
probabilities.

To simplify the calculation and without any loss of generality, we assume a deterministic yield
curve in this sub-section. The Vasicek term structure model is assumed in the next sub-section. In the
Geske-Johnson model, the recovery amount is random and endogenous. Under deterministic interest retes,

the one-period Geske-Johnson model is a Black-Scholes-Merton solution:
(25) Vg (01)=D(01) = P(0D) X N(hy (X1))+ A(Q)[L- N(hy (X1))]
where h; is defined in (18). Since interest rates are non-stochastic, P(0,1) =A(0,1) . Equation (25) is

identical to (18) when op =0 and T, =T; =1. For the two-year bond,i.e. T, =T, =2 and T, =1, we

have two zero bond components:
(26)  D(0D) = PO X;N(hy (X1))+ AO)L-N(hy (X1))]

and
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@n DO = PODXIN(N (Kp) ~Nulhy (X))] + PO2)XaNo( (K. by (X): 11 2)
+ AN (%)) = Na(hy (K2, 15 (X2)i 41/ 2)]

where h* fori =1, 2 isdefined in (18), X; =c,, X, =1+c,. Recall that K,, isthe solution to

A = D(1,2) + X; where D(1,2) isabond priceat t =1. Finaly, the two-year coupon bond valueis the
sum of(26) and (27):

Vgs;(0,2) = D(0) + D(0,2)
(29) = P(O)X;N(h{ (X)) +P(0,2) XN, (h{ (K1), 5 (X))
+ Ag[1— N, (hy (Kp2),h3 (X5)iv1/2)]

In the equation, we need to evaluate three probabilities. Thefirst oneis N(h; ) which has already been
evaluated. The second oneisabivariate normal probability with two separate strikes, Ky, that hasto be
internaly solved and X, that is the face and coupon value at maturity.

Notethat X; isthefirst cash flow of the company, hence X; =10+110=120. The value of

D(0,2) hence contains the cash flow of the first bond and the coupon amount of the second bond. Here, we
assume that the split of D(0,1) isproportiona. That isthe value of the one-year bond is % D(0J), and
thevalue of the two-year bond is ;2 D(0,1) + D(0,2) .

In the original Geske-Johnson model, the volatility is assumed flat (as in Black-Scholes (1973)).
Unfortunately under this condition, the calibration of the second bond becomes impossible. Hence, we
extend the model to include avolatility curve, i.e. v(0,2)? =v(01)? +v(1,2)?. Thisflexibility allowsusto
calibrate the modd to the two-year bond price. Theresultsare A(0) =2351.65, v(0,1) =1.5, and
v(1,2) =0.69. Under such results, the survival probabilities are Q(0,) = N; (K,,) =0.9426 and
Q(0,2) = N, (K45, X,) =0.8592 respectively. And therecovery vauesfor the two bonds are computed by
subtracting the coupon vaue from the corresponding discount debt value. For example, D(0,1) =109.09
which is split into two parts— the one-year bond of $100 and the coupon of the two-year bond of $9.09.
The one-year bond has a coupon portion of 110xQ(0,1) x P(0,1) =110x%0.9426x 0.9512 = 98.63, and hence
has arecovery value of 100—-98.63=1.37. A smilar ca culation givesthe recovery value of the two-year
bond as 5.52."

For easy comparison, we put together all the numbersin the following table. We observe that the
Duffie-Singleton (DS) model has the lowest surviva probabilities and therefore should have the highest
recovery values, dueto the fact that they both contribute positively to the bond price. The Geske-Johnson
(GJ) model has the highest surviva probabilities and lowest recovery values. The Jarrow-Turnbull (JT)

' Note that the total recovery vaue needs to be 6.89 by (28).
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model isin between. Sincethe bond priceistraded at par, higher survival probabilities need to be balanced

by lower recovery values.

JT DS GJ
Q(0,2) 0.9262 0.8929 0.9426
Q(0,2) 0.8578 0.7923 0.8592
total recovery value (i.e. R(0)) 8.90 18.68 6.89
recovery of first bond 3.09 6.53 137
recovery of second bond 581 12.15 5.52

B. Multi-period Analysis

In this section, we examine the multi-period behavior of reduced form models, namely Jarrow-Turnbull and
Duffie-Singleton and the structural model of Geske-Johnson. We examine the default and recovery
implication under an n-period setting. We a so incorporate stochastic interest rates in our anaysis. We
replace the interest rate process in (16) by the following Ornstein-Uhlenbeck process:

29 dr(t) =alu-2-rmkt+ WS

a

where the parameter vaues are given for flat (constant) and upward sloping yield curves as follows

Vasicek Model Parameters
a (reverting speed) 0.40
M (reverting level) 0.08
o(volatility) 0.05
g (mkt. price of risk) -0.10
r(0) (initid rate) 0.05

We first examine flat yield curve. Then we use the upward sloping parameter values to construct the
Vasicek model.

It is generally thought that the Geske-Johnson modd is difficult to implement because for an n-
period bond, we need n-dimensional probability functions, which are computationally expensive.
However, in this paper, we employ the standard one-dimensional equity binomial model, which can be
accurate to the second decimd placein 50 steps.

We first examine the case of extremely low coupons. Thisisthe case wherewe can seethe
fundamental difference between the structural model of Geske-Johnson and the reduced form models of
Jarrow-Turnbull and Duffie-Singleton. Note that the Jarrow-Turnbull model is(11) and the Duffie-
Singleton modd is (13) and (14), both with ¢, =0. The Geske-Johnson mode! is (22) with X; =0 fori <

n. Inal the models, the zero coupon bond price, P(t,T), should follow the V asicek model (formulagiven
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in an appendix.) The face value of debt is 110. Werun the Geske-Johnson modd with an asset value of
A(0) =184 and various voldtility levels: 0.4, 0.6, 1.0, and 1.6. Theresults computed are summarized as

follows.
GJModd
voldtility 04 0.6 1.0 16
equity vaue 169.25 177.92 183.49 183.94
debt value 14.74 6.08 0.51 0.06
recovery 4.06 2.08 0.19 0.00
JT Modd
recovery rate 3.69% 1.89% 0.17% 0.00%
intensity 1.79% 485%| 13.19%| 20.00%

Asthevolatility goes up, the equity value in the Geske-Johnson model goes up (i.e. cdl option value goes
up.) Sincethe asset vaueis fixed at 184, the debt value goes down. The survival probability curves under
various volatility scenarios of the Geske-Johnson model are plotted in Figure 1; and the default probability
curves (unconditiondl, i.e. Q(T;_;) —Q(T;)) areplotted in Figure 1la We observe severd results. First, as
therisk of default becomes eminent (i.e. high volatility and low debt value), the likelihood of default shifts
from far term (peak at year 30 for volatility = 0.4) to near term (peak at year 5 for volatility = 1.6). Second,
it is seen that the asset volaility has a huge impact on the shape of the survival probability curve. The
Geske-Johnson mode is able to generate humped default probability curve, often observed empirically.
Third, these differently shaped probability curves are generated by one single debt, something not possible
in reduced form models. Both the Jarrow-Turnbull and Duffie-Single models cannot generate such
probability curves with one single bond, due to the lack of information of intermediate cash flows.
Corresponding to the recovery amounts under the Geske-Johnson model, we set the fixed recovery rate of
the Jarrow-Turnbull model as shown in the abovetable. Given that one bond can only imply one intensity
parameter value, we set it (under each scenario) so that the zero coupon bond price generated by the Geske-
Johnson model is matched. As shown in the abovetable, the intensity rate goes from 1.79% per annum to
20% per annum. Note that flat intensity value is equivalent to aflat conditional default probability curve.
To visualize the difference this flat conditional default probability curve of the Jarrow-Turnbull mode with
the non-flat curve generated by the Geske-Johnson model, we plot in Figure 1c the case of volatility = 1.6.
The conditional default probabilities are calculated as %ﬁm .

Our next analysisis to keep bond vaue fixed, so that we can examine the default probability curve
with the risk of the bond controlled. We assume that the company issues only one coupon bond at 10%. At
the volatility level of 0.4, the asset valueis $123, at 0.6, it is $290, a 1.0, it is$15,000. Figure 2 and Figure
2ademonstrate the Geske-Johnson model for various volatility levels but keep the bond at par. We can see

that for the same par bond, the default and surviva probability curves are drastically different asthe
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asset/volatility combination changes. Thisis afeature not captured by either the D uffie-Singleton or the
Jarrow-Turnbull model.

To compare to the Jarrow-Turnbull and Duffie-Turnbull models, we keep the case where the
volatility level is 0.6 and asset value is 290. The recover rates of both Jarrow-Turnbull and Duffie-
Singleton models are assumed to be 0.4. Figure 3 and Figure 3a show the survival and default probability
curves of the three models. The flat conditiond forward default probability for the Jarrow-Turnbull model
issolved to be 7.60% (or equivaently the intensity rate is 7.74%.) The conditional forward default
probabilities for the Duffie-Singleton model are certainly non-constant. The “recovery-adjusted”
continuously compounded discount rateis 9.52%. From the surviva probability curves (Figure 3), itis
seen that the Geske-Johnson and Jarrow-Turnbull models can be close. But the default probability curves

(Figure 3a) demonstrate that the default pattern can be quite different.

5. CREDIT DEFAULT SWAP PRICING

Credit default swaps are the most widely traded credit derivative contract today. A default swap
contract offers protection againgt default of apre-specified corporate issue. In the event of default, a
default swap will pay the principa (with or without accrued interest) in exchange for the defaulted bond.*®

Default swaps, like any other swap, have two legs. The premium leg contains a stream of
payments, called spreads, paid by the buyer of the default swap to the sdller till either default or maturity,
whichever is earlier. Theother leg, protection leg, contains a single payment from the seller to the buyer
upon default if default occursand 0 if default does not occur. Under some restrictive conditions, credit
default swap spreads are substitutes for par floater spreads.”® In many occasions, the traded spreads off
credit default swaps are more representative than those off risky corporate bonds. The valuation of a credit

default swap is straightforward. For the default protection leg:

=1

(= w(A(), r (1)))P(0,t)[-dQ(0, 1)]

]

0

T, T,
(30) ,f P(O,t)[—dQ(O,t)]—jl W(A(), r (1)) P(0,1)[-dQ(0, 1)]
0
0

0
T

=1

W(O,T,) =

P(0,)[-dQ(0,1)] - R, (0)

18 Default swaps can also be designed to protect a corporate name. These default swaps were used to be
digital default swaps. Recently these default swaps have a collection of “representative” reference bonds
issued by the corporate name. Any bond in the reference basket can be used for delivery.

19 See, for example, Chen and Soprazetti (2002) for a discussion of the relationship between the credit
default swap spread and the par floater spread.
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In discrete time, we can write (30) as.

(309  WOT)=2." POT)IQOT)-Q0T)I-R,(©)

Thisis cdled the protection leg or the floating leg of the swap. For the premium leg, or the fixed leg:
(3)  WOT)=%2." POT)QOT)

Combining (30) and (31), we can use market credit default swap spreads to back out default probability
curve. As the default swap market grows, more and more investors seek arbitrage trading opportunities
between corporate bonds and default swaps. This suggests that we should use the calibrated corporate bond
curves (last section) to compute default swap spreads. We use the results of Figure 3 to compute credit
default swap values for various tenors (1~30 years). Therecovery rate in the swap contract is assumed to
be 0.’ Figure 4 shows how different models can imply different default swap values.? The Geske-
Johnson model are close to the Duffie-Singleton model at near terms but close to the Jarrow-Turnbull
model at far terms. Aswe have seen, same par bond implies very different default probabilities from the
Jarrow-Turnbull, Duffie-Singleton, and Geske-Johnson models, which in turn imply very different credit
default swap values.

The default swap market has grown very fast in the past few years? and many fixed income
traders and fund managerstry to arbitrage between corporate bonds and credit default swaps should they
see discrepancies in spreads. Here, we demonstrate that such arbitrage trading strategies can be misleading.
Arbitrage profits can be entirely due to modd specification. To see that, we suppose that the Geske-
Johnson modd is the correct model. Hence the probabilities that cd cul ate the par bond are shown in
Figure5 for the case where asset value is $290 and volatility is 0.6 (so that the coupon debt is at par). The
30-year default swap spread implied by the Geske-Johnson model is 438 basis points. This is done by
implementing (30a) to obtain the default swap value ($32.87) and implementing (31) to solve for the
spread. Note that the credit default swap value and spread computed using the Geske-Johnson model are
consistent with the recovery assumption of the Geske-Johnson moddl. To use the Jarrow-Turnbull model,

we need afixed recovery rate. To get such value, we use that the probabilities generated by the Geske-

2 Aslong as therecovery rateis fixed, it simply scales up/down the curves and does not change the shapes.
2L \We should note that the default swap price cannot be computed directly from the Duffie-Singleton model
because thereis no cash flow paid if there is no default on the protection leg. Hence, for the Duffie-
Singleton modd, it is possible to compute the default swap value once the underlying bond is available; but
not possibleto compute the bond price when the default swap spread is available.

2 According to a Lehman Brothers credit research report (O’kane (2001)), the credit derivative markets are
estimated to be $1 trillion in notional &t the time the report was written and near half of which is the market
of default swaps.
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Johnson model and afixed recovery rate to compute the default swap value. Thisimplied recovery rateis
0.5840. Now we let the Jarrow-Turnbull model to calibrate to the data (by changing the intensity
paramter). The Jarrow-Turnbull bond priceisitis110.10 at an intensity level of 7.19%, 10% overvalued
due to model error.

Thesituation can be even more severe if we alow the Geske-Johnson model to generate more
humped shaped default probability curve. Set volatility to 0.4 and asset vaue to 184, we price another 30-
year par bond by the Geske-Johnson model. We aso use the Vasicek model for the term structure. Again,
assume the Geske-Johnson model to be correct. It implies the probability curves as shown in Figure 6. The
30-year default swap valueis $11.18 and the spread is 163 basis points. A flat recovery rate implied by
such aspread is0.3117. Using this recovery rate, we obtain the Jarrow-Turnbull price to be 83.74 at the
intensity level of 4.99%, which is 16% undervaued due to model error. If we set volatility to 0.6 and asset
vaueto 184, we price the 30-year bond by the Geske-Johnson model at 80. Again, assume the modd to be
correct. It implies the probability curves as shown in Figure 7. The 30-year default swap valueis $29.06
and the spread is 562 basis points. A flat recovery rate implied by such a spread is 0.5485. Using this
recovery rate, we obtain the Jarrow-Turnbull price to be 81.10 at the intensity level of 9.84%, 1%

overvaued due to model error.

6. CONCLUSION

In this paper, we provide agenera framework that brings consistency between the reduced form and
structural models. The structural models we consider in this paper is not those of the “barrier-type” that
assumes exogenous barriers but the Geske-Johnson model that allows the default points (strike price) to be
endogenously computed. We show that the “true structura” model of Geske-Johnson can be simplified to
barrier-type (extended Merton) if the endogenous default points are not internal ly solved for but
exogenously given.

In adiscrete time binomial framework, we show that any set of risky cash flows and recovery can
be priced by asimple formula. Thisformulais same for both structural and reduced form models. This
formula alows us to compare various models because they only differ in the recovery computation.
Different recovery assumptions result in different survival and default probabilities. In calibration, the
differencesin recovery amounts and in probabilities balance each other out, as we demonstrate, because
each model price is made to match the market price. However, these different recovery values and
probabilities should result in large differences in derivatives prices. We demonstrate that large differences
exist even for the smplest credit derivative contract — credit default swaps.

Finally, In order to compare the “true structural” Geske-Johnson mode with the reduced form
models represented by Jarrow and Turnbull (1995) and Duffie and Singleton (1997, 1999), we extend the

Geske-Johnson model to incorporate random interest rates and a non-flat volatility curve. In aseries of
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appendices, we demonstrate how to implement the Geske-Johnson mode with random interest rates and a

volatility curve.

20



APPENDIX

A. Derivation of (18)

We shall derive (18) by induction. A T, -maturity zero coupon bond with abarrier X; is:

D(O.T,) = EOQ|Le‘ng MW it AT,), xl}J

(A1) = P(0, Ty E{ [min{ AT), X4}]
= A(O)[1- N(hy" (X1))] + P(0,T;) Xy N(hy (Xy))

where h (X,) isdefined in thetext. A T,-maturity zero coupon bond with abarrier X, hasthe

following valueat T;:

A2 ruydu . |
EQle ™ min{ A(T,), X AT,) > X
(A2) 4 T{ { A(T2) 2}| (Ty) 1
0 AT < X,

Hence, it has the following vaue today:

I ¢ (w)d -2 rudu . | |
D(O,Tz) = EOQ Le o r(u) UEE\}E T mln{ A(Tz), X2} |I{A(T1)>X1} |

_ Q| 2] o2 | |
=Eg LET1 Le R AT Xz'{A(T2)>x2})|'{A(T1)>x1} |

_ F,
(A3) =P(0,T,)E, [A(TZ)I{A(T2)<X2"A(T1)>X1} + XZI{A(T2)>X2"A(T1)>X1}]

_ F,
=P(0,T,)E, [A(Tz)('{A(wxl} =l am)>x, 7 Am)> Xy} )* Xz'{A(Tz)>x2AA(T1)>x1}]
= A(O)[N; N3]+ P(0,2) X,N;

where the second to last line is obtained by appropriatel y dividing the integration region. Carrying out the
expectation using the standard log normal results should yield the result desired. Similar procedure is

applied to any arbitrary T, .
B. N, and N,

In this appendix, we show that N, and N, are both survival probabilities, but under different probability
measures. For the ease of composition, we use Ni* = N(h; (X;)) where N([) isastandard univariate
normal probability function, as an example. The general case, while tedious algebraically, is

straightforward.
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To simplify notation, wedrop “1” from h{", X;, T;, and measure F,. Note that:

+ P(O, T
ey M= E\(O)’ESIA(TM{AW}]

N(h™) = Eg [l amysx; ]

Equation (B1) can be written as:

Eo[AM) 1 amysxy] = ESTAMIES [y ]

(B2) 0) _p
= P)(A(g,'l)') Eg [l amy>xi]

The change of measure from F to F* is done as follows:

@y o AD)

dF  EG[A(T)]

Given that A isalog normal process, we immediately obtain that the above derivative as a change of
measure of y/var[In(A(T)] under the F measure. In the following, we sketch the basic math of forward

measure.

Assume an interest rate process under the Q measure generally as:

(B4)  dr(t) =a(r,t)dt+o(r,t)dw® (t)

Then, by (3), we have the Radon-Nykodym derivative defined as follows:

A, T)

(B5  n(tT)= PET)

Applying Ito’s lemmaon the bond price:



(B6)
.

0=InP(T,T)=InPE,T)+|
t
T 2
_J lla(r,u)Pr(u,TH du
2l PUT) |

1
P(u,T)

LPU (u,T)du+P, (u,T)dr +% P, (u,T)(dr)? :de (u)

T

_ 1 N 1 2 |
—InP(t,T)+! F)(u’_l_)LPu(u,T)du+Pr(u,T),u(r,u)+ZPrr(u,T)cT(r,u) |du
T T 2
1 omn_| 1oup Tl
+] sy P eI IMwe W) jt ZL—P(U,T) du
T T T 2
= 1 o | L[etwr @Dl
—InP(t,T)+t r(u)du+jt sy P NI DR W) ! 2{ |
Letting:
_o(.HR L.T)
(B7)  O(tT)= ST
and moving the first two terms to the left:
T T T 1
-] rwdu-nPe,T) =] 6, T)AW () - | >6(u.T) du
(88) t (Tt Tt \
AGT) _ o oy | 1 2
peT =) exp\_! 6(u, T)dW(u) jt SomT) du}

Thisimplies the Girsonav transformation of the following:

P (u,T)
P(u,T)

T
B9 WOm=wr®+| o(r,u du
t

Theinterest rate process under the forward measure henceforth becomes:

_ , P (t,T) | .
(B10) dr(t)—{a(r,t)+a(r,t) m|dt+a(r,t)dw ®



Note that the forward measure derived aboveis quite general. It does not depend on any specific
assumption on the interest rate process. In the following, “random equity and random interest rate”, we do

need normally distributed interest rates, or thereis no solution to option pricing.

| | o)l
(B1) | A :L Ay |dt+rA 0 | [i-p? ol |awee
Ldr(t) | a(r,t)| 0 G'r(r,t)| L 0 1] LdWrQ(t)|

Using the forward measure, we get:

P(t,T) |
dAw) | |1+ poao (1) S - | @ |
@ | - S N LT e
2 Pt e (1 1] |Ldw (t
Ldr(t) | {a(r,t)wr(r,t) T |
T T T 3
_ P uT) | S
(B13) A(T)_A(t)exp\jt Lr(u)+paAar 9 5 |o|u+jt adW* () th o duj
where
AW (1) = 1= p2dWE (1) + odW, (1)
From the result of 1to’slemma, we can then arrive at the following result:
A(T)—&ex (] ‘—l{a (r t)m|2+ 0 A0, (r t)m—la2 |du
TRen A T2 T Ry | T ey T2
t
(B14) ] ] \
| RUT) A ' Fr
jt ARl (u)+jt oA dW (U)
Hence,
Fr _ _ 1 2
©15) E( [INS(T)] = InS(t) InP(t,T)+2v(t,T)
var{ T [InS(T)] = v(t, T)?
where
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|
po 0, (1, LT, 2

op du
Pu,T) | P(u,T) |

v(t,T)? =

[ S——]

2
‘ La’ 0 PuT |
i
C. Derivation of (20)

The Geske-Johnson model is usually written as the multi-variate normal probability format. As aresult, the
final solution looks more complex than it really is. Once, we understand the recursive relationship in zero
coupon bond formulas, the final result isvery straightforward to recognize. Hence, in this appendix, we
provide asimple three period example to demonstrate how we can easily derive and streamline the Geske-
Johnson mode. The rest can be obtained by induction.

For the one-year zero, it isidentical to the Merton-Rabinovitch model:

(C1) D(OlTl) =Va o, Tl) = P(Ole)Kll[ Nl(hl_ (Kll)) =0+ A(O)[1- Nl(hl+ (Kll))]
= P(0,T})Ky3 M1 (Kyg) + AQ)L-7 (Ky)]

Notethat K;; = X, , thefirst coupon. The second line of the above equation is merely a notation change.

Thesimpler notation allows to more easily labe high dimension normal probabilities with different strikes.

For the two-year zero, we need to solve for an internal solution K, that equates

(C2) A(Ty) = D(Ty, Ty) + Xy

where

(C3) D(Ty, T,) = ER AT, T,) min{ AT,), X 5}
=P(T;, T,)N(d_) + A(Ty)[1- N(d. )]

and

c1)  d, = In A(T,) =InP(T;, T,) = In X, £ 1v3(T,,T,)

v(T1,T2)

is aMerton-Rabinovitch result again. Notethat v (CI) is defined in (18). We should note that since
P(T;,T,) isafunction of theinterest rate & time T, ,i.e. r(T;). Asaresult, K,, isaso afunction of
r(T,) . For the convenience of later derivation, we rewrite (D3) in its original integral form as follows.
Also for notational convenience, we shorten the following notation: D(T;,T;) =Dy, P(T;, T;) =Ry,
AT)=A and r(T) =r;.
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0 o X

(C3a Dy, = J J /\12X2¢(A2,r2)dA2dr2+Jr J Nip AoP(Ay, 15 )dAdr,

-0 X, -0 0

Thisexpression allows us to easily integrate with other integrals. The vaue of the two-year zero price at

T, is:
D1z A > Ky

(C4)  {A-X; X <A<Kp
0 A <X,

To obtain the current value of the two-year zero, we simply integrate these payoffs at its corresponding

region. Notethat K,, isafunction of the interest rate.

00

0 o0 o K
©)  DO2=| | NoEIALmin(A FAIAA DA + | | Aos(A - F)d(A A,

Kz ) —o0 Xy )
AV A,
The second term can be shown as:
(C8) A, = J J Ny (V= F)@(Vy, r)dvdr, — J J Nor(My — R)P(Vy, 1y)dVodny
- Ky —oo Ky

= Vo[nI(Kn) - HI(KIZ)] = Ry Xq[M7 (Kqp) =M1 (Kyp)]

Thefirst term can be valued as:
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oo oo

. |
| f AP (Po, Ty | A, )R, B(A, 1)dAdY

Al_ /\01
-0 Ky —oo 0 |
, o o |
"'J J Am‘“ J NpXoP(Po, 1o | A, 1) dAdr, (A, 1)dAdn
-0 Ky, -0 Ky |
o % o |
- J KJ {J { M (Bt | A )OAST 9 )IAT
0 o o o |
T Y IO AT AT HA IR,
-0 K, |~ Ky
0 o o o |
"'J J Not J J N X (Ao, T | A1) dAdr, (A, 1) dAd,
-0 Ky, |0 Ky |

= A (Kyp) = A3 (Kpp, Kgg) + Ry XoM 5 (Kyp, K )

Hence, the two-year coupon bond, returning to the original notation, is:
Vai(0,T,) =D(0,Ty) + D(0,Ty)

(C8) =D(0,T) +A, +4,
= P(0, Tp) XqM1 (X1) + P(0, Ty) XoM5(Kyp, X5) + A1-T5(Kyp, X5)]

where

Ni(K) = J * (Ay, 1) dAdr

R 8

(C9)

0 0 00

I'I§(K1,K2):J J J ¢ (AL, Ay, 1;)dA,dA dry

-0 K; K,

It is shown in Appendix A that the last two integrals in the above equation can be written as:

(C10) | A (A Ir)dA = Ay ] ¢* (A I1y)dA
K K

and

€10 | | A (AL A Im)dAdA = A | | 87 (AL A, Ir)dAdA
Ky K, Ky K
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where the density is adjusted by the vol atility.

Following the same procedure, although tedious, we can derivethe three-year zero as:

D(Ost) = P(Ole)Xl[rlI (Kls) —|'|I(K12)] + P(OyTz)Xz[n 5 (K13' K23) -n 5 (K121 Kzz)]

(C12) ]
+P(0,T3) X3M 3 (Kyz, Koz, Kag) + AO)[M3 (Kyp, Kyp) =M 3 (Kya, Koz, Kag)]

Now, we should observe a pattern for the zero coupon bond prices, which gives (20).

D. Implementation of (20)

The closed form Geske-Johnson model (with constant volatility and constant interest rates) can be
computed efficiently only when n < 2. When n > 2, then the multi-variate normal probability functions can
not beimplemented efficiently, particularly in high dimensions. We use the standard equity binomial
model with various payoffs to pick up the survival probabilities, zero bond values, and the equity
(compound option) value.® Notethat in the binomial model, there is no need to solve for the implied strike
price, Kj;. The (compound) option value is directly computed off the actual strikes, X; .

In (20), we have both volatility and interest rate to be non-constant. We allow vol&tility to bea
deterministic function of time (for caibration) and interest rates to be random (to capture interest rate risk).
We shall sketch briefly in this appendix how (20) isimplemented.

First, the deterministic volatility function is handled by changing time interval, suggested by Amin
(1991). In the binomial mode, the up and down sizes are determined by:

(D1)

If the volatility is changing over time, we simply adjust At so that oAt isconstant. In this case, both u
and d are congtants over time and the tree recombines.
To incorporate stochastic interest rates, we first build alattice for a“risk-neutra” bivariate

Brownian motion process.

-og? 2 |
o2) LdlnAl{r o /zldt{a ol{ hp p{dwll

d | [a(u-r)| LO I 0 1] LdW;|

where E[dW,dW,] =0. We then set up abinomial |attice as follows:

% \We learned via private conversation that the implementation of the Geske-Johnson model in Eom,
Hedweg, and Huang (2002) is computed using the binomia mode.
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We label asset value and interest rate at various nodes as follows:

<INAyy, Ty >

<InAy, 1y >
<InAy,ry > <In Ay, Ty >

<InAyg,rg >
<InAgy, Ty >

Then we first show that the asset values recombine. Given that:

INA;, =InAy +(ry —a? 1 2)At +0/At

D3
3 InAy =In A +(r, — 02 1 2)At - oAt

It is straightforward that:

In Ay =In Ay +(rg -2 1 2)At + a/At

D4
(9 =InAy +(ry —0? 1 2)At - oAt

We now show that the interest rate lattice recombines approximately. Note that:

ry = ro(1—alt) + auht + VAt

(D5)
ro =ro(@—alt) +apit - ot
Hence,
ry = o (1—alt) + auit + At
(06) =[ro (1- aAt) + it — 5/ At (L- alt) + auit + Sy/At

=1y (1- 2alt) + 2auit
=11 (- alt) + auist - At
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Thisresult is an approximated one because higher order terms are ignored.?*

E. Closed Form Solution for v(0,T;) — Rabinovitch (1989)

Following the interest rate model defined in Appendix D (i.e. the V asicek model), the zero coupon bond
price satisfies the following closed form equation:

(El) P(O, t) — e—I’F(O,t)—G(O,t)
where

1-e™@

F(Ot) =

2 2
LO°FO.Y

G(0,t) = (t- F(O,t))(ﬂ-%) 4a

Hence, by Ito’slemmawe have,
| 2

PLT) 5 =F(t,T;)202
or | Y

(E2) aé(t,Ti){
and

t t
E3) | o3T)du=]| F(u,Ti)ZJZdu:52t+((t—2F(o,t))+%)(g)2
0 0

21 higher order terms are not ignored, then the lattice does not combine. In the case where the lattice does
not recombine, we take the average of two non-recombining vaues at each node and proceed. We discover
that this method produces extremdy close results when we compare the zero coupon bond price against the
Vasicek closed form model. We use the same technique with both deterministic volatility function and
random interest rate are used. Note that in here, since At is different period by period, the interest rate
dimension of the lattice does not recombine.
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Figure 1: The GJModel: Zero coupon bond

Survival Probability Plot
under various asset volatility levels
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Note:  Figure 1 illustrates the survival probability curves under various asset volatility scenarios of the
30-year zero coupon bond under the Geske-Johnson model. The Asset value is set to be $184.
The bond has no coupon and aface value of $110. Theyield curveisflat at 5%
Figure 1la The GIJModel: Zero Coupon Bond

Default Probability Plot
under various asset volatility levels
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Note:  Figure laillustrates the default probability curve. All parameters are identical to those in Figure
1
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Figure 1b: Comparison of GJ and JT Models: Zero Coupon Bond

Conditional Forward Default Probability Curves
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Note:  Figure 1b illustrates the default probability curves under GJ and JT models for the volatility level
of 1.6. All parameters are identical to those in Figure 1.
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Figure 2: The GJ model: 10% Coupon Bond

Survival Probability Plot
GJ model at various volatility levels
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Note:  Figure 2 illustrates the survival probability curves under various asset volatility scenarios of the
30-year Geske-Johnson model. The Asset values are 123, 290, 15,000 for volatility levels of 0.4,
0.6, and 1.0 repsectively. The bond has a coupon of $10 and price of par.
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Figure 2a The GJModel: 10% Coupon Bond

Default Probability Plot
GJ model at various volatility levels
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Note:  Figure 2aillustrates the default probability curves under various asset volatility scenarios of the
30-year Geske-Johnson model. The Asset values are 123, 290, 15,000 for volatility levels of 0.4,
0.6, and 1.0 repsectively. The bond has a coupon of $10 and price of par. All parameters are
identical to those in Figure 2.
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Figure 3: Comparison of the GJ, DS and JT Models: Par Coupon Bond

Survival Probability Plot
for GJ, DS, and JT models

Survival probability

Years to maturity

Note:  Figure 3 illustrates the survival probability curves under the 30-year Geske-Johnson, Duffie-
Singleton with 0.4 recovery ratio, and Jarrow-Turnbull with 0.4 recovery ratio models. The Asset
valueis set to be $290 and volatility 0.6 so that the bond is priced at par. The bond has $10
coupon and aface value of $110.

Figure 3a. (Comparison of the GJ, DS and JT Models: Par Coupon Bond
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Default Probability Plot
for GJ, DS, and JT models
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Note:  Figure 3aillustrates that under a 10% coupon bond, the Geske-Johnson model can generate
desired default probability curve. All parameters are identica to thosein Figure 3.
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Figure 4: Credit Default Swap Values for the GJ, JT, and DS models
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Figure 5: (Unconditiona) Default Probability Curve for the GJ and JT models
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Geske-Johnson model — — — — Jarrow-Turnbull model ‘

In the Geske-Johnson model, asset=290, volatility=0.6 (so that debt=100), coupon=10, face=100,
and yield curveisflat a& 5%. Thecredit default swap vaueis $32.87. A recovery rate that satisfies aflat
recovery is0.5840. Theintensity valueis7.19% and the bond priceis110.1.
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Figure 6: (Unconditiond) Default Probability Curve for the GJ and JT models
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In the Geske-Johnson model, asset=184, volatility=0.4 (so that debt=100), coupon=10, face=100,
and yield curve is generated by the Vasicek model given in thetext. The credit default swap value
is$11.18. A recovery rate that satisfies aflat recovery is0.3117. Theintensity valueis 4.99%
and the bond price is 83.74.

Geske-Johnson model — — — — Jarrow-Turnbull model ‘

Figure 7: (Unconditiona) Default Probability Curve for the GJ and JT models
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In the Geske-Johnson model, asset=184, volatility=0.6 (debt=80), coupon=10, face=100, and yield
curve is generated by the Vasicek model given in the text. The credit default swap vaueis
$29.06. A recovery rate that satisfies aflat recovery is0.5485. Theintensity valueis9.84% and
the bond priceis 81.05.

Geske-Johnson Model — — — — Jorrow-Turnbull Model ‘
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