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Abstract
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1 Introduction

Estimation of Euler equations has dominated empirical research on consumption over

the almost twenty years since Hall’s (1978) seminal work. Unfortunately, despite scores of

empirical studies using household data, Euler equation estimation has not fulfilled its early

promise to reliably uncover preference parameters such as the intertemporal elasticity of

substitution. Even more frustrating, the model does not even seem to fail in a consistent

way: some studies find strong evidence of ‘excess sensitivity’ of consumption to predictable

income growth, while others find much less, or even no, excess sensitivity.

This paper offers an explanation for the conflicting and inconsistent empirical results,

by showing that that when the Euler equation estimation methods most commonly used on

household data are applied to simulation data generated by a standard model of consump-

tion under uncertainty, those methods are incapable of producing a consistent estimate

of the intertemporal elasticity of substitution. Furthermore, ‘excess sensitivity’ tests can

find either high or low degrees of sensitivity, depending on the exact nature of the test.

All of the theoretical problems stem from approximation error. The standard proce-

dure has been to estimate a log-linearized version of the Euler equation. The paper shows,

however, that the higher-order terms are endogenous with respect to the first-order terms

(and also with respect to omitted variables), rendering consistent estimation of the log-

linearized Euler equation impossible. Unfortunately, the second-order approximation fares

only slightly better. The paper concludes that empirical estimation of approximated con-

sumption Euler equations should be abandoned, and discusses some alternative empirical

tests of consumption behavior that are not subject to the problems of Euler equation

estimation.

The paper begins by presenting the specific version of the dynamic optimization prob-

lem that is tested. The next section describes the standard empirical methodology for

estimating Euler equations and summarizes the results that have been reported in the

literature. The next section describes the details of the simulations which generate the

data which are to be analyzed using the same methods used in the empirical literature.
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The following section is the heart of the paper: it shows that the standard empirical

methods cannot produce consistent estimates of true model parameter values. The next

section describes several empirical strategies that are candidates to replace Euler equation

estimation, and the final section concludes.

2 The Model

Assume that the consumer is solving the following maximization problem (essentially the

same as the model in Carroll (1992, 1997) and Zeldes (1989)):

max
Ct

u(Ct) + Et

T∑
s=t+1

β(s−t)u(Cs) (1)

s.t. Xt+1 = R(Xt − Ct) + Ỹt+1

Ỹs = P̃sṼs

P̃s = GPs−1Ñs

u(C) =
C(1−ρ)

1− ρ
where ρ > 1

where Ps is permanent labor income, which is buffeted by lognormally distributed mean-

one shocks Ñs with variance of log N = σ2
n, implying that log Ps follows a random walk

with drift; Ys is current labor income, which is equal to permanent labor income multiplied

by a mean-one transitory shock Ṽ which is equal to zero with probability p and otherwise

is distributed lognormally with variance of log V = σ2
v , and with a mean that guarantees

that EtṼt+1 = 1; the interest rate, the growth rate of income, and the time preference

factor, respectively R, G, and β, are constant; and the consumer’s utility function is of

the Constant Relative Risk Aversion form with coefficient of relative risk aversion ρ ≥ 1.

The solution to this model obeys the Euler equation:

RβEt [Ct+1/Ct]
−ρ = 1. (2)

As written, this problem has two state variables, the level of liquid assets and the level

of permanent labor income. Carroll (1996) shows that this problem can be converted to

a single-state-variable problem by dividing through by the level of permanent income Pt,
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implying that at each age of life there is an optimal rule relating the ratio of cash-on-

hand to permanent income xt = Xt/Pt to the ratio of consumption to permanent income

ct = Ct/Pt.

The model is solved numerically by backwards induction on the Euler equation. In

the last period of life, the optimal plan is to consume everything, c∗T (xT ) = xT . In the

next-to-last period, designating t = T−1, the standard Euler equation for marginal utility

is

RβEt

[
Pt+1c

∗
t+1(xt+1)
Ptct

]−ρ

= 1. (3)

For a given value of xT−1 this equation can be solved numerically to find the optimal

value of cT−1. This is done for a grid of possible values for xT−1 and a numerical optimal

consumption rule c∗T−1(xT−1) is constructed by linear interpolation between these points.

Given c∗T−1(xT−1) the same methods can be used to construct c∗T−2(xT−2) and so on to any

arbitrary number of periods from the end of life.1 Carroll (1996) shows that if Deaton’s

‘impatience’ condition RβEt(GÑt+1)−ρ < 1 holds, these successive optimal consumption

rules will converge to a steady-state rule as the horizon recedes, and that consumers

behaving according to the converged rule can be described as engaging in ‘buffer-stock’

saving. I will denote the optimal consumption rule for any period t as c∗t (xt) and the

converged consumption rule as c∗(x).

To verify the accuracy of the numerical solution, Figure 1 plots RβEt

[
Pt+1c∗(xt+1)

Ptc∗(xt)

]−ρ

as a function of xt. Approximation errors will lead the function to differ from one at

points away from the gridpoints chosen for xt. The figure shows that the errors involved

in numerical solution of the model are very small; the function is so close to one over the

entire plotted range (which encompasses the range of values of wealth that actually arise

when the model is simulated) that it appears to be a solid line exactly at one.
1For more details on the method of solution, see Carroll (1992, 1997).
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Figure 1: Numerical Value of RβEt

[
Pt+1c∗(xt+1)

Ptc∗(xt)

]−ρ

3 The Standard Procedure

3.1 Derivation of the Log-Linearized Consumption Euler Equation

The “Log-Linearized” consumption Euler equation of this paper’s title is obtained by

taking a first-order Taylor expansion of the nonlinear Euler equation (2), and making

some approximations. For every possible Ct and Ct+1 there will be some ηt+1 for which

Ct+1 = (1+ηt+1)Ct (assuming that consumption is always positive). Since we rarely expect

to see consumption rise or fall dramatically from period to period, it seems reasonable to

use the approximation (1+ηt+1)−ρ ≈ 1−ρηt+1 which corresponds to the first-order Taylor

expansion of (1+ηt+1)−ρ around the point ηt+1 = 0. The Euler equation (2) then becomes:

RβEt(1− ρηt+1) ≈ 1. (4)

A simple transformation of this first-order approximation to the Euler equation has been

the basis for most of the estimation of consumption Euler equations. By definition 1 +

ηt+1 = Ct+1/Ct and using the approximation that for ‘small’ ε, log(1 + ε) ≈ ε we obtain
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ηt+1 ≈ log Ct+1 − log Ct = ∆ log Ct+1. Substituting this back into equation (4) gives

Rβ(1− ρEt∆ log Ct+1) = 1. (5)

Finally, taking the log of both sides, implicitly defining the time preference rate δ from

β = 1/(1+δ) so that log Rβ ≈ r−δ, and using the approximation log(1−ρEt∆ log Ct+1) ≈

−ρEt∆ log Ct+1 gives

(r − δ)− ρEt∆ log Ct+1 ≈ 1

Et∆ log Ct+1 ≈ ρ−1(r − δ), (6)

or, defining the expectation error εt+1 = ∆ log Ct+1 −Et∆ log Ct+1, an alternative way to

express this result is:

∆ log Ct+1 ≈ ρ−1(r − δ) + εt+1 (7)

where εt+1 is iid and the law of iterated expectations implies that it is uncorrelated with

any variable known at time t (Hall (1978)).

Those authors made uncomfortable by the first-order approximations involved in deriv-

ing equation (7) have sometimes been reassured by a well-known result that suggests that

the second-order approximation leads to the same estimating equation. The second-order

Taylor approximation (1+ηt+1)−ρ around ηt+1 = 0 is (1+ηt+1)−ρ ≈ 1−ρηt+1+ ρ(ρ+1)
2 η2

t+1.

Solving for ∆ log Ct+1 as above, the end result is

∆ log Ct+1 ≈ ρ−1(r − δ) +
ρ + 1

2
Etη

2
t+1 + εt+1, (8)

and if η2
t+1 is uncorrelated with r and δ, then the estimating equation (8) is still a valid way

of estimating the value of ρ because the Etη
2
t+1 term should be absorbed in the constant

term of the regression.2

2A common alternative way of deriving essentially the same result is to assume that the consumption
shocks are lognormally distributed and independent of the other variables in the model; in that case the
last term in equation (8) is the variance of the consumption innovations rather than the square, and its
coefficient is ρ/2 rather than (ρ + 1)/2.
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3.2 Previous Empirical Results

To keep the notation simple, the derivations thus far have implicitly assumed that ρ, δ,

and r are constants. Of course, if these parameters were constant across all times, places,

and people then it would be impossible to estimate a coefficient ρ in an equation like (7).

In practice, Euler equations like (7) have mainly been estimated in two ways. In mi-

croeconomic data, the most common procedure has been to estimate the equation across

different consumers at a point in time, by identifying groups of consumers for whom dif-

ferent interest rates apply. In macroeconomic data, the equation has been estimated by

exploiting time-variation in the aggregate interest rate.3 The principal purpose of this

paper is to show that the usual procedures for microeconomic estimation of this equa-

tion do not work; it seems likely that similar problems will apply to estimation based on

time-series variation in interest rates, but I leave that question for future research.

The instrumental variables approach to estimating the model using microeconomic

data can be thought of as equivalent to taking means across groups of consumers with

different characteristics. For example, typical instruments used in the empirical literature

are education group or occupation. Denoting distinct groups identified by the instruments

as j, and denoting the mean consumption growth for members of group j as (∆ log Ct+1)j

and the group-specific values of the parameters as ρj , rj , and δj ,4 equation (7) becomes:

(∆ log Ct+1)j ≈ ρ−1
j (rj − δj) + (εt+1)j (9)

Thus, the standard log-linearized empirical Euler equation boils down to:

(∆ log Ct+1)j = α0 + α1rj + (εt+1)j (10)

where the understanding has been that α1, the coefficient on r, should be a consistent

estimate of the intertemporal elasticity of substitution, ρ−1. This will be true if three con-

ditions hold: first, the approximations involved in deriving equation (7) are not problem-

atic; second, any differences in δj across groups are uncorrelated with whatever differences

3A few studies have had enough cross-sections of household data to exploit time-variation in the aggre-
gate interest rate using household data. See in particular Attanasio and Weber (1985).

4Assume for convenience that everyone in group j has the same values for these parameters.
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there may be in rj ; and, finally, there are no differences across groups in ρj .

Empirical results for estimating equations like (10) have been poor. Usually the α1

term is estimated to be insignificantly different from zero; only a few studies have found

significantly positive values of ρ.5 However, the poor results in estimating ρ often been

interpreted as reflecting poor identifying information about differences in r across groups,

rather than as important rejections of the Euler equation itself.6

The potential empirical problems with identifying exogenous variation in interest rates

across households have led many papers to focus on another feature of the model: Hall’s

‘random walk’ proposition. Hall showed that in a model with quadratic utility, consump-

tion should follow a random walk and no information known at time t should help to

forecast consumption growth between t and t + 1. The alterative hypothesis has usually

been that consumption is ‘excessively sensitive’ to forecastable income growth. Formally,

denoting the average growth rate of income for consumers in group j as (∆ log Yt+1)j , the

equation most commonly estimated has been:

(∆ log Ct+1)j = α0 + α1rj + α2(Et∆ log Yt+1)j + εj, (11)

and the ‘random walk’ proposition implies that α2 = 0 when the expected growth rate of

income is instrumented using information known by the consumers at time t.

Empirical results estimating equation (11) using micro data have been hardly better

than those estimating the baseline equation (10).7 In a comprehensive survey article,

Browning and Lusardi (1996) cite roughly twenty studies that have estimated the coeffi-

cient on predictable income growth. Estimates of the marginal propensity to consume out

of predictable income growth ranged from zero (consistent with the CEQ LC/PIH model)

up to 2. An optimist might note that most estimates are in the range between 0 and .6.
5See the survey paper by Browning and Lusardi (1996) for more details.
6Usually identification has been obtained by calculating a marginal tax rate for each person and using

the variation in marginal tax rates across households to identify an after-tax interest rate. This is prob-
lematic if the level of income is correlated with tastes. One simple mechanism for such a correlation is
capital accumulation: if patient consumers save more they will eventually have a higher level of capital
income, generating a correlation between tastes and the marginal tax rate.

7Although, interestingly, when the equation is estimated using macro data it reliably generates a coef-
ficient of around 0.5. See below for a potential explanation.
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3.3 The Explanation?

Carroll (1992, 1996, 1997) has challenged the foregoing empirical methodology on the

grounds that theory implies that the higher-order terms in the approximation cannot be

ignored because they are endogenous and in particular are correlated with ρj, δj , and,

most fatally, rj and (Et∆ log Yt+1)j . Carroll (1992, 1996, 1997) shows that ‘impatient’

consumers behaving according to the standard CRRA intertemporal optimization model

described above will engage in “buffer-stock” or target saving behavior.8 Those papers

show that, among a collection of buffer-stock consumers with the same parameter values,

if the distribution of x across consumers has converged to an ergodic distribution, then

average consumption growth across the members of the group will be equal to average

permanent income growth. Thus, if we have j groups of consumers such that within each

group j all consumers have the same parameter values, and x has converged to its ergodic

distribution within each group j, then

(∆ log Ct+1)j = (∆ log Pt+1)j = gj . (12)

The intuition for this result is fairly simple: If consumers are behaving according to

a target-saving or buffer-stock model, then it is impossible for consumption growth to

be permanently different from underlying income growth. If consumption growth were

forever greater than income growth, consumption would eventually exceed income by an

arbitrarily large amount, driving wealth to negative infinity. If consumption growth were

permanently less than income growth, income would eventually exceed consumption by

an arbitrarily large amount, driving wealth to infinity. Thus, in a model where there is an

ergodic distribution of wealth across consumers, it is impossible for average consumption

growth to differ permanently from average income growth.9

As an aid to understanding the nature of the endogeneity problem, suppose that the

second-order approximation equation (8) captures all of the important endogeneity so that

8The term ‘impatient’ here and henceforth refers to the condition RβEt(GÑt+1)
−ρ < 1. Note that, so

long as income is growing over time G > 1, consumers can be impatient in the required sense even if β = 1
so that they do not discount future utility at all.

9For much more careful discussion and arguments, see Carroll (1996, 1997).
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the terms of third order and higher can safely be ignored (we will examine this assumption

carefully below). Assume that ρ does not differ across the groups, and rewrite the second

order approximation equation (8) in the new notation:

(∆ log Ct+1)j ≈ ρ−1(rj − δj) +
1 + ρ

2
(Etη

2
t+1)j . (13)

If the members of group j are distributed according to their ergodic distribution, it should

be the case that the average value of η2
t+1 is equal to the average of its expected value.

Substituting (η2
t+1)j for (Etη

2
t+1)j in equation (13) we now have two equations, (13) and

(12), for average consumption growth for members of group j. The only way both equa-

tions can hold simultaneously is if the (η2
t+1)j term is an endogenous equilibrating variable;

in particular, the two equations can be solved for the value this term must take:

(η2
t+1)j ≈

2
1 + ρ

[gj − ρ−1(rj − δj)] (14)

This equation makes abundantly clear the econometric problem with estimating the

log-linearized Euler equation (7): (η2
t+1)j is an omitted varible in the regression equation

and theory implies that it is correlated with rj (as well as with gj , δj and ρj if they differ

across groups). Hence it will be impossible to get a consistent estimate of the coefficient

on rj if the (η2
t+1)j term is omitted from the equation.

The easiest way to understand how the mechanism works is to think of η2
t+1 as a

measure of the degree of undesirable variation in consumption growth caused by the un-

certainty of income. Because consumers with less wealth have less ability to buffer con-

sumption against income shocks,10 there will be a direct relationship between the level of

wealth and the value of Etη
2
t+1. In fact, the size of the target buffer stock of wealth is the

real equilibrating factor in the model. For example, consumers who are more impatient

(higher δ) will have a smaller value of the ρ−1(rj − δj) term in the Euler equation. How-

ever, impatient consumers will also hold less wealth, leading to a higher value of Etη
2
t+1.

Across steady-states, the higher value of the η2
t+1 term should exactly offset the lower

10This is an implication of the concavity of the consumption function proven by Carroll and Kim-
ball (1996).
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value of the ρ−1(rj − δj) term, leaving the growth rate of consumption at gj regardless of

the value of δj (so long as the impatience condition is satisfied).11

Another thought experiment illustrates the econometric problem very clearly. Consider

a dataset composed of consumers who satisfy the impatience condition and thus are buffer-

stock savers. Suppose these consumers are identical in every respect (including having a

common expected growth rate of permanent income g) except that different consumers

face different interest rates. Suppose further that the econometrician can observe each

household’s interest rate. If equation (10) were a valid empirical specification this would

be the ideal dataset for estimating the intertemporal elasticity of substitution. But what

happens when equation (10) is estimated on this dataset? The regression will estimate

α0 = g and α1 = 0 regardless of the true value of ρ, because the expected growth rate of

consumption will be equal to g for all the consumers despite the difference in interest rates

across groups. The reason is that the consumers facing a higher interest rate will hold

more wealth, and therefore will have a lower value of Etη
2
t+1 by an amount that exactly

offsets the higher interest rate they face.

The foregoing theoretical arguments are not, in themselves, sufficient to definitively

discredit the estimation of log-linearized Euler equations, because the arguments were

predicated on two untested assumptions: that consumers within each group are distributed

according to an ergodic distribution, and that the second-order approximation is not prob-

lematic. Only simulation methods can determine whether the behavior of the second-order

approximation under the ergodicity assumption is a good or bad guide to the behavior of

a finite collection of consumers obeying the model over limited time periods. I therefore

turn now to simulations.

4 The Simulations

The procedure for generating simulated data from the model is as follows. First, I solve

the model as specified above for the baseline set of parameter values indicated in Table 1,
11This statement assumes that the second-order approximation holds exactly. The more general state-

ment would be that all of the higher-order terms together should take on values that make (∆ log Ct+1)j =
gj .
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Parameter Low Baseline High
r 0.00 0.02 0.04
δ 0.00 0.04 0.08
g 0.01 0.03 0.05
ρ 1 3 5
σn 0.05 0.10 0.15
σv 0.05 0.10 0.15

Table 1: Parameter Values

yielding a baseline consumption rule c∗(x). I then solve the model for two alternative

values of each of the model’s parameters, leaving the other parameters fixed at their

baseline levels. For example, I solve the model in the case where all parameter values

are at their baseline levels except that the interest rate is assumed to be 0 percent, then

I solve for the case where the interest rate is 4 percent. This generates two alternative

consumption rules c∗r=.00(x) and c∗r=.04(x) where the subscripts indicate which parameter

is being set to a value different from baseline.

When all of the optimal consumption rules have been generated, I perform the simula-

tions. For each combination of parameter values (‘group,’ for short), I set up a population

of one thousand consumers who begin ‘life’ with zero assets. For their first year of life,

I draw random income shocks from the income distribution functions described above. I

next use the appropriate consumption rule to determine first period consumption. First

period’s income and consumption determine the savings with which the the consumers

enter the second period; I draw random income shocks again, and again apply the con-

sumption rule, yielding period two consumption and saving. I repeat this exercise for

twenty periods (‘years’) in a row, discarding the first 9 periods in order to allow the dis-

tribution of x across consumers to ‘settle down’ to something approximating the ergodic

distribution. For the baseline set of parameter values, Figure 2 plots the theoretical dis-

tribution of x after ten years of simulation against the ergodic distribution; the match is

very close, suggesting that nine years of presample simulation are adequate preparation.

The data from years 10-20 are processed to generate 10,000 observations of ∆ log Ct+1,
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Figure 2: Distribution of x After 10 Years (Solid) vs. Ergodic Distribution (Dashing)

r, ∆ log Yt+1, and the dummy variables indicating group membership. With the exception

of the interest rate, the data do not contain the actual values of the parameters; instead,

they contain dummy variables for each parameter that equal one or zero for each con-

sumer. Roughly speaking, these dummy variables correspond to the ‘instruments’ such as

occupation, education, and race used in actual data.

The goal is to characterize the kinds of regression results that an econometrician would

obtain using a sample of data drawn from these distributions. The appropriate strategy

is therefore a Monte Carlo procedure which reports both the mean parameter estimates

that would be obtained by a large number of studies on such data, and the variation in

parameter estimates that would be found across the different studies.

My Monte Carlo procedure is as follows. For each ‘group’ to be included in a regression,

I draw a random sample of 1000 observations from the 10,000 available for that group. I

then perform the regressions and record the coefficient estimates and standard errors. I

then draw another sample of 1000 observations for each group, perform another regression,

and record the results. I repeat this procedure 100 times to obtain a distribution of

12



parameter estimates and standard error estimates.12

Note that there are several respects in which the ‘econometrician’ examining the sim-

ulated data is better off than his counterpart using actual data. First, there is no mea-

surement error in the simulated data for either income or consumption; estimates of the

fraction of measurement error in the PSID data on food consumption range up to 92

percent. Second, the econometrician working with simulated data can directly observe

the interest rate that applies for each household. In empirical work there is rarely a re-

ally convincing way to identify exogenous differences in interest rates across the different

households in the sample. Third, the different ‘groups’ in the simulations differ from the

baseline parameter values in only a single dimension (parameter) at a time. In reality,

occupation or education may be correlated with several parameters; for example, edu-

cation is highly correlated with the growth rate of income, but may also be correlated

with the time preference rate. Finally, the typical empirical dataset probably has fewer

than a hundred consumers in any given instrumented age/occupation or age/education

cell, while I have a thousand consumers for each possible combination of parameter val-

ues. The purpose of these simulations is to show that even in ideal circumstances, Euler

equation estimation by standard IV methods does not work. Presumably there is even

less reason to expect it to work under the less than ideal circumstances faced in actual

data.

5 Estimating Consumption Euler Equations on the Simu-

lated Data

5.1 The Log-Linearized Euler Equation

Table 2 presents the results when the log-linearized Euler equation (10) is estimated on the

simulated data. The first row presents results when equal numbers of consumers from each
12Ideally, it would be better to estimate thousands of regressions on thousands of totally independently

simulated consumers. However, creating 10,000 simulated consumers for each combination of parameter
values is close to the limit of what is possible with the computer facilities at my disposal. The results I
report are very similar to those obtained from several different runs of the complete set of programs, so it
seems very unlikely that results would be much different if I were able to simulate more consumers.
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possible parametric combination (except for deviations of ρ from baseline) are included;13

the second row presents results when only the consumers with baseline parameter values

(group BASE) and those for whom the interest rate differs from the baseline (group R)

are included. The second column indicates the set of instruments used for predicting all

instrumented variables in the regression. Since r is the only explanatory variable included

in the regressions reported in rows 1 and 2, the dummy variable indicating interest rate

group (RDUM) is the only instrument that makes sense in these two regressions.

I exclude from the regressions all consumers for whom income was zero in either period

of observation, Vt = 0 or Vt+1 = 0, for two reasons. First, such data are typically excluded

from the empirical regressions whose methods I am trying to duplicate. Second, extreme

income shocks tend to interact strongly with the nonlinearities of the model, so even a

relatively small number of such extreme events could heavily influence the results. It is

therefore a more compelling indictment of the estimation method if it performs badly even

when such extreme events are excluded.

As noted above, I estimate the regressions 100 times with 100 different collections

of simulated consumers. For each variable, the table presents the mean (across the 100

regressions) of the coefficient estimates and of the standard errors. Next to the means

are the fifth and ninety-fifth percentiles in the distribution of coefficient estimates and

standard error estimates. The last column indicates the average number of observations in

each regression. Because the probability that either Vt = 0 or Vt+1 = 0 is .01, this number

should on average be equal to 0.99*1000*(number of groups included in regression). For

example, one would expect a sample size of 0.99*1000*11 = 10890 for the first row, since

there are 11 distinct possible combinations of parameter values excluding combinations

where ρ differs from baseline. The actual average value was 10888.

Turning finally to the results, the mean estimate of the coefficient on rj term in row 1

is 0.01, with a mean standard error of .11, so the interest rate term is not remotely statis-

tically significant in the typical regression. However, most of the Monte Carlo regressions
13Groups for which ρ differs from baseline are excluded because the goal in these equations is to estimate

ρ; the question of what the ‘right’ value of ρ is is complicated if ρ differs across groups.
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rj (∆ log Yt+1)j Average
Row Sample Instruments Mean [.05-.95] Range Mean [.05-.95] Range NOBS

1 All But RDUM 0.01 [-0.11,0.18] 10888
ρ 0.11 [0.10,0.11]

2 BASE + RDUM 0.01 [-0.11,0.18] 2961
R 0.10 [0.10,0.10]

3 All But RDUM −0.02 [-0.17,0.17] 0.98 [0.82,1.27] 10888
ρ +GDUM 0.12 [0.10,0.18] 0.14 [0.08,0.27]

4 BASE+ RDUM −0.02 [-0.17,0.18] 0.98 [0.82,1.20] 4944
R + G +GDUM 0.12 [0.10,0.16] 0.14 [0.08,0.23]

5 All But RDUM 0.01 [-0.10,0.15] 0.11 [0.09,0.12] 10888
ρ +Vt 0.09 [0.09,0.09] 0.01 [0.01,0.01]

6 BASE+ RDUM 0.01 [-0.10,0.14] 0.11 [0.08,0.13] 2961
R +Vt 0.09 [0.08,0.09] 0.02 [0.01,0.02]

Notes: The first column indicates which simulated consumers are in the sample. For example ’All but ρ’ means that all
simulated consumers are included except those for whom ρ differs from its baseline value.

The second column indicates which categories of dummy variables are used as instruments. For example RDUM indicates
use of three dummy variables indicating which of the three possible interest rates the consumer faces.

Table 2: Log-Linearized Euler Equation Estimated on Simulated Data

would be able to reject the true value of 1/ρ = 1/3 with a high degree of confidence.

Results are similar in row 2 when the sample is restricted to the BASE and R groups

only. Thus, estimation of the standard log-linearized Euler equation for consumption does

not reveal the intertemporal elasticity of substitution even for consumers behaving exactly

according to the model.

The next row of table 2 presents the results when the basic log-linearized Euler equation

is augmented with a term reflecting the predictable growth rate of income, as in equa-

tion (11), and income growth is instrumented using the set of dummy variables GDUM,

which indicate which permanent-income-growth group the consumer belongs to (RDUM

remains in the instrument set to instrument for the interest rate). Again the equation

is estimated for two samples, one which includes members with all appropriate paramet-

ric combinations, and one containing only consumers who are members of the R and G

groups. In row 3, the mean coefficient on the predictable growth rate of income is 0.98,

highly significantly different from zero, but not significantly different from one. Results

are similar in row 4, which again restricts the sample to the set of consumers for whom

one might expect the best results. Furthermore, in the typical regression the coefficient
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on the interest rate term is again not significantly different from zero. This result, con-

sumption growth equal to predictable permanent income growth but independent of the

interest rate, is precisely what the analysis in Section 3 and in Carroll (1996, 1997) showed

holds if consumers are distributed according to the ergodic distribution. Apparently, at

least under the parameter values considered here, 9 years of presample simulation for 1000

consumers suffice to generate a sample that generates behavior very similar to that under

the ergodic distribution.

As noted in the literature survey above, empirical point estimates of the excess sensi-

tivity of consumption growth to predictable income growth have mostly fallen in the range

from 0.0 to about 0.6. Although many of the studies could not reject a coefficient of 1 on

the income growth term, it is not possible to claim that the empirical evidence is more

consistent with a coefficient of 1 than with a coefficient of 0. It might seem, then, that

these results rescue the Euler equation from the Scylla of a prediction that α1 = 0 only to

smash against the Charybdis of a prediction that α1 = 1. Fortunately, this is not the case.

The theoretical arguments and simulation evidence presented do not necessarily imply a

coefficient of 1 on Et∆ log Yt+1 – they imply a coefficient of one on Et∆ log Pt+1. That is,

consumption should on average grow at the rate of permanent income growth. None of

the theoretical or simulation work up to this point in the paper has indicated what the

coefficient should be on predictable transitory movements in income.

The last two rows of the table present the model’s predictions about the coefficient on

the predictable transitory movements in income. (Transitory movements in income are

predictable because the level of the transitory shock is white noise. Thus, if income is

temporarily low today, income growth between today and tomorrow is likely to be high,

and vice versa. Hence the instrument used for Et∆ log Yt+1 is Vt.) The coefficient on

transitory movements in income is statistically significantly different from zero, but, at

around .10, is much closer to zero than to one. As before, the coefficient on the interest

rate term is insignificantly different from zero.

These very different results for transitory and for permanent income growth imply that

there is little we can say about the model’s prediction for the coefficient on predictable
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income growth, if we have not also decomposed that growth into the part representing

transitory growth and the part representing permanent growth. Essentially all we can say

is that (under this set of baseline parameter values), the coefficient on predictable income

growth should be somewhere between .10 and 1.0. Of the roughly twenty studies cited by

Browning and Lusardi (1996), none (to my knowledge) attempts to decompose predictable

income growth into predictable transitory and predictable permanent components. Since

standard confidence intervals for α1 in these papers always overlap the range between 0.10

and 1.0, if ‘excess sensitivity’ is defined as a degree of sensitivity inconsistent with un-

constrained intertemporal optimization, none of the ‘excess sensitivity’ tests summarized

by Browning and Lusardi (1996) provides any evidence on whether consumption actually

exhibits excess sensitivity to predictable changes in income.

These results also bear on the finding of Campbell and Mankiw (1989) that regressions

aggregate consumption growth on predictable aggregate income growth find a coefficient of

roughly 0.5. Although Campbell and Mankiw interpreted their findings as suggesting that

about half of consumers behave according to a ‘rule-of-thumb’ and set their consumption

equal to their income, Campbell and Mankiw did not decompose their predictable income

growth term into a predictable permanent growth term and a predictable transitory term,

so it is quite possible that their results are consistent with the standard model without

the need for introducing ‘rule-of-thumb’ consumers.

A final category of tests should be mentioned briefly: empirical estimates of the rate

of time preference. Lawrance (1991) estimates an equation like (11) using data from the

PSID, but including dummy variables for education in the estimating equation. She finds

that consumers with more education have higher rates of consumption growth. She con-

cludes that consumers with more education must be more patient. This conclusion would

be warranted if the log-linearized consumption Euler equation were valid, because −ρ−1δj

is omitted from the baseline empirical specification since δj is unobserved. However, given

that a positive correlation between permanent income growth and education is a bedrock

empirical result in labor economics, an obvious alternative explanation of Lawrance’s re-

sults is that the higher consumption growth for more educated consumers reflects their
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faster predictable permanent income growth, not a greater degree of patience.

To summarize, when the log-linearized consumption Euler equation is estimated on

household data generated by consumers behaving exactly according to the standard model,

using the methods that have been used by most of the existing cross-section empirical

studies, the results provide no information on either the coefficient of relative risk aversion

or on whether consumption exhibits ‘excess sensitivity’ to predictable income growth.

5.2 The Second Order Approximation

A few empirical studies, of which Dynan (1993) is one of the earliest and best, have avoided

the log-linearized Euler equation and instead used the second-order approximation to the

Euler equation, equation (8),

∆ log Ct+1 ≈ ρ−1(r − δ) +
1 + ρ

2
η2

t+1 (15)

as the basis of their empirical estimation, using an estimating equation of the form

(∆ log Ct+1)j = α0 + α1rj + α2(η2
t+1)j . (16)

where the understanding has been that that the estimation should yield α0 = ρ−1δ,

α1 = ρ−1, and α2 = 1+ρ
2 . There is a widespread impression that, if any instruments can

be found that are correlated with (η2
t+1), estimation of this equation gets around whatever

problems there may be with the log-linearized Euler equation.

Unfortunately, the situation is much subtler than it appears. Obtaining consistent

estimates for α1 and α2 requires instruments that can identify independent variation in

rj and (η2
t+1)j . But recall that according to equation (14)

(η2
t+1)j ≈

2
1 + ρj

[gj − ρ−1
j (rj − δj)]. (17)

Assuming ρj is constant across groups and that the second-order approximation is valid,

this equation tells us that any instrument correlated with η2
t+1 must be providing infor-

mation about either rj, δj or gj . Note, however, that an instrument correlated with rj is

not useful in estimating α2, because the variation in η2
t+1 due to variations in rj will obvi-

ously be perfectly correlated with the direct variation in rj, whose coefficient, remember,

is already being estimated by α1.
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One might hope that an instrument correlated with δj could serve to identify α2.

Certainly, an instrument correlated with δj should generate variation in target wealth

and therefore in η2
t+1 and so may look useful in the first-stage IV tests. And it is quite

plausible to suppose that the time preference rate is correlated with observable variables

such as, say, education (one of the instruments Dynan used for η2
t+1). The first row of

table 3 therefore presents the results when equation (16) is estimated on simulation data

using dummy variables for the time preference rate and interest rate as instruments for

η2
t+1. The coefficients on both the interest rate term and the η2

t+1 term are insignificantly

different from zero - just as in Dynan’s (1993) empirical work. Note that, if there were not

econometric problems of some sort, a coefficient of zero on rj would imply ρ = ∞, while

a coefficient of zero on η2
t+1 would imply ρ = −1, making nonsense of the model.

The econometric problem, of course, is that δj also enters the Euler equation in another

place: in the ρ−1(rj − δj) term. But this means that δj is an unobserved variable that

is correlated with the included variable η2
t+1, a situation that implies that the coefficient

estimate on η2
t+1 will be inconsistent. This example illustates the point that no instrument

that is correlated with the time preference rate will be valid, even if it works well in

the first-stage regressions. Furthermore, a test of overidentifying restrictions (such as

Dynan performs) will not detect this problem because OID tests only find correlations of

instruments with the dependent variable which are not captured by the variables that are

included, but since (η2
t+1)j is included the OID test should not reject the specification.

A simple thought experiment may clarify the problem better than the foregoing anal-

ysis. Consider attempting to estimate equation (8) using data from several groups of

consumers who differ from each other in their (observable) interest rates and in their (un-

observable) time preference rates, but who have identical g’s. The rj and (η2
t+1)j terms

will vary across groups; first-stage IV regressions of η2
t+1 on the instruments will find the

instruments have significant predictive power. Yet the analysis above showed that each

of these groups should have consumption growth on average equal to their permanent

income growth – that is, all the groups will have identical consumption growth. Hence

the coefficient estimates on both rj and (η2
t+1)j will be zero.
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rj (η2
t+1)j Average

Row Sample Instruments Mean [.05-.95] Range Mean [.05-.95] Range NOBS
1 All RDUM+ 0.00 [-0.17,0.18] 0.18 [-3.19,2.57] 10897

DELDUM 0.11 [0.09,0.15] 1.94 [1.10,3.47]
2 BASE + RDUM+ 0.07 [-0.13,0.25] 9.67 [7.95,12.05] 4957

R GDUM 0.13 [0.11,0.16] 1.45 [0.98,2.21]
3 All All But RHODUM 0.00 [-0.14,0.18] −0.05 [-0.60,0.47] 7931

and DELDUM 0.11 [0.10,0.11] 0.30 [0.27,0.34]
Notes: The first column indicates which simulated consumers are in the sample. For example ’All but ρ’ means that all
simulated consumers are included except those for whom ρ differs from its baseline value.

The second column indicates which categories of dummy variables are used as instruments. For example RDUM indicates
use of three dummy variables indicating which of the three possible interest rates the consumer faces.

Table 3: Second-Order Approximation Estimated on Simulated Data

The conclusion is that, because (η2
t+1)j is a function only of r, g, δ, and ρ and because δ

and ρ are unobservable, equation (8) can only be estimated consistently, even in principle,

by using a set of instruments that 1) contain independent information on rj and gj , and 2)

are uncorrelated with preferences. As a practical matter, it is likely to be hard to plausibly

identify such instruments, but there is of course no difficulty in simulated data. The next

row of table 3 presents the results when equation (8) is estimated on a simulated dataset

that should represent the ideal set of circumstances for estimating such an equation: The

only differences among the consumers included in this dataset are in rj and gj , where rj is

directly observed and gj is indirectly observed via the set of dummy variables indicating

which of three growth-rate groups the consumer belongs to.

The results are interesting. While the coefficient on the interest rate term is still

insignificant, the mean coefficient on the η2
t+1 term is 9.7; since equation (8) implies that

this coefficient is equal to 1+ρ
2 , this would imply a coefficient of relative risk aversion of

over 18. With the mean standard error estimated at about 1.45, the typical regression in

this sample would be able to reject the (true) value of ρ = 3 with an overwhelming degree

of statistical significance.

Why does estimation of this equation fail? Recall the two critical assumptions used

in deriving the expression for η2
t+1 upon which the entire foregoing analysis rests. The

first was that consumers in each of the j groups were distributed according to an ergodic
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distribution which they are assumed eventually to reach. The earlier simulation results

showing that average consumption growth is essentially equal to average permanent in-

come growth, and the figure showing that the distribution of x after 10 periods is virtually

identical to the steady-state distribution, suggested that this assumption is probably rea-

sonable. The problem therefore must lie in the second assumption: that the second-order

approximation to the Euler equation is sufficient to capture the important nonlinearities

in the problem.

Another way of putting this is to say that the results indicate that the Etη
2
t+1 term is

correlated with higher-order terms in the Taylor expansion of the true function, because

if η2
t+1 were not correlated with higher-order terms then the coefficient estimate on Etη

2
t+1

should be unbiased.

The fact that there are missing higher-order terms in equation (8) also undermines

the conclusion that (η2
t+1)j is a function only of r, g, δ, and ρ. In particular, there is

no longer any reason to exclude the possibility that (η2
t+1)j could be correlated with, for

example, the variances of the innovations to transitory and permanent income, (σ2
n)j and

(σ2
v)j . The last regression in table 3 therefore presents the results when the instrument

set is expanded to included the dummy indicator variables for σ2
n and σ2

v . The effect is

dramatic: the coefficient on η2
t+1 becomes -0.05, and is no longer significantly different

from zero – again reproducing Dynan’s result.

In sum, IV estimation of the second-order approximation to the consumption Euler

equation fares little better than IV estimation of the log-linearized equation. Neither

approach appears capable of identifying structural parameters even in a dataset consisting

exclusively of consumers behaving exactly according to the model.

6 What Is To Be Done?

IV estimation of approximated Euler equations estimation has been a mainstay of economic

analysis of consumption for a long time. If the argument of this paper is accepted, such

estimation will be abandoned. What kinds of analysis can replace it?
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Row Problems Mean Estimates [.05-.95] Range
1 None 3.38 [2.36,4.65]

0.61 [0.39,0.89]
2 Signal/Noise = 1/2 2.18 [1.67,2.94]

0.36 [0.28,0.45]
3 Signal/Noise = 1/3 1.42 [1.09,1.96]

0.23 [0.19,0.30]
4 Assumed β = 1 2.82 [1.87,4.34]

0.79 [0.64,1.05]
5 Assumed β = 1/1.08 3.79 [2.85,4.87]

0.60 [0.42,0.86]
Notes: Results summarize 100 Monte Carlo simulations. First column indicates the problems GMM estimation
might face.

Table 4: Euler Equation Estimated on Simulated Data Using GMM

6.1 Bad Ideas

6.1.1 GMM Estimation

The obvious answer is that, since approximation error is the root of all the evils described

above, the solution is to dispense with approximation by estimating the full nonlinear

Euler equation using the Generalized Method of Moments methodology introduced by

Hansen (1982). Table 4 presents the results of GMM estimation on the baseline set of

simulated consumers. As expected, the Monte Carlo results imply that GMM estima-

tion usually produces an estimate of the coefficient of relative risk aversion that is not

significantly different from the true value ρ = 3.

The problem with full-fledged GMM estimation is that consistent estimation requires

perfect data on consumption, whereas the available consumption data for households are

almost certainly very noisy. Shapiro (1984) estimates that 92 percent of the variation in

the PSID food consumption variable is noise; Runkle (1991) estimates that 76 percent of

the variation is noise. And although Dynan does not estimate the noise-to-signal ratio in

her quarterly Consumer Expenditure Survey data, she reports that the standard deviation

of quarterly changes in log consumption is 0.2, which seems far too large to reflect quarterly

reevaluations of the sustainable level of consumption.
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The effect of measurement error on the GMM estimates is illustrated in the second

and third rows of table 4. Row 2 reflects the results when the same data on Ct+1/Ct that

are used for row 1 are first multiplied by a mean-one white noise shock whose distribution

is identical to that of the consumption shock. This distributional assumption is motivated

by its implication that the signal-to-noise ratio in the resulting data is exactly 1/2, as

indicated in the second column of the table. When GMM is performed on the mismeasured

data, the mean estimate of ρ is about 2.2, with an estimated standard deviation of .36,

so a hypothesis test that ρ = 3 would almost always reject. Row 3 shows that when

the signal/noise ratio is reduced to 1/3 (by multiplying by another white noise shock

constructed along the same lines as the first one), the estimate of ρ drops to about 1.4,

and the standard error falls.

Another problem with GMM estimation is that estimation of ρ requires an assumption

about R and β (or, if R is observed, at least an assumption about β). The last two rows

of the table present the results that emerge if the econometrician falsely assumes that

β = 1 (row 4) or β = 1/(1.08) (row 5).14 Assuming that consumers are more patient than

the truth reduces the mean estimate of ρ by about 0.6, while assuming that they are less

patient boosts the estimated ρ by about 0.4. These results suggest that this problem is

less serious than the problems caused by measurement error.

Despite these results, GMM estimation is not completely useless: Because measure-

ment error should bias the estimate of the coefficient of relative risk aversion downward,

and because mistaken assumptions about Rβ do not distort the estimates of ρ too badly,

the GMM estimate can serve as a rough lower bound on the coefficient of relative risk

aversion. A finding of a relatively large lower bound (say, two) would provide moderately

interesting information about preferences.
14All that matters for these equations is the product Rβ, so separate experiments showing the results

for incorrect assumptions about R would be redundant.
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rj gj Average
Row Sample Mean [.05-.95] Range Mean [.05-.95] Range NOBS

1 BASE + RDUM −0.01 [-0.04,0.02] 0.10 [0.07,0.13] 4954
+ GDUM 0.02 [0.01,0.02] 0.02 [0.01,0.03]

Notes: The first column indicates that the sample consists only of the consumers with baseline parameter values or
those for whom either the interest rate or the growth rate of income differs from baseline.

Table 5: Regression of (η2
t+1)j On rj and gj

6.1.2 Using η2
t+1 As the Dependent Variable

Equation (14), reproduced below for convenience, appears to offer hope of estimating the

coefficient of relative risk aversion even without GMM estimation:

(η2
t+1)j ≈

2
1 + ρ

[gj − ρ−1
j (rj − δj)]. (18)

In principle, one could estimate this equation using data from groups of consumers with

different values of g and r, so long as there were no differences in δ or ρ across those

groups. If the second order approximation were good, the coefficient on g should equal

2/(1 + ρ) and that on r should equal (2/ρ(1 + ρ)).

Table 5 presents the results when this equation is estimated using the best possible

subset of consumers from the simulated dataset.15 The estimated coefficient on g is about

0.10 and is highly statistically significant. But this estimate implies an estimate of ρ =

2/.10 − 1 ≈ 19. Since the true ρ is 3, this is not an attractive result. The coefficient on

the interest rate is approximately zero and statistically insignificant. Thus, equation (18)

also fails to provide a consistent way to estimate ρ.

6.1.3 Individual-Specific Euler Equation Estimation

The arguments to this point in the paper have been directed at demonstrating that the

traditional Instrumental Variables approach to Euler equation estimation does not succeed.

Because all RHS variables were always instrumented with group identifiers, the second-

stage regressions contained no individual-specific information in the independent variables.
15The only consumers included were those from the baseline group and those groups for whom r or g

varied from the baseline.
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For example, each individual’s idiosyncratic expectation of η2
i,t+1 was effectively replaced

by the mean value of η2
i,t+1 for the group to which that consumer belonged.

The logic proposed as an explanation for the failure of the estimation method relied

on the proposition (verified by simulations) that the group mean values of the η2
i,t+1 terms

would take on particular values. That logic, therefore, does not necessarily prove that

it is impossible to estimate structural consumption Euler equations using idiosyncratic,

individual-specific data. If it were possible to observe, for each individual i, their id-

iosyncratic, contemporaneous value of Ei,tη
2
i,t+1, then it might be possible to estimate

equation (8) without using instrumental variables. To be specific, one could estimate:

∆ log Ci,t+1 = α0 + α1ri + α2Ei,tη
2
i,t+1 + εi,t+1. (19)

Paxson and Ludvigson (1997) and Laibson (1997) both examine this possibility theoret-

ically. Paxson and Ludvigson are able to calculate, at each possible wealth state, the

approximation bias in the estimate of ρ associated with the second-order approximation.

Although they are only able to solve their model back to six periods before the end of life,

they find that the bias is substantial at most levels of wealth; the biased estimate of ρ is

typically around 0.7 or 0.8 times the true ρ, although the extent of the bias declines as

wealth rises.

Laibson (1997) adopts a methodology somewhat more akin to that of this paper. He

solves a lifetime optimization problem, then simulates a population of consumers behaving

exactly according to the model. For each simulated consumer at each age, he calculates

the model’s mathematical expectation for Ei,tη
2
i,t+1, then performs a regression like that

of equation (19) on the simulated data (omitting the ri term because he does not allow

variation in interest rates across households.) Like Paxson and Ludvigson (1997), he finds

that the resulting estimate of ρ is downward biased by a factor of around 0.8.

Table 6 presents the results when the corresponding experiment is performed in my

model under the baseline set of parameter values, and under several alternative parametric

configurations. Under the baseline parameter values, the point estimate of α2 is 4.46, which

implies an estimate of about ρ = 8– an upward bias, in contrast to the Laibson/Paxson-
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Etη
2
t+1 Average

Row Sample Method Mean [.05-.95] Range NOBS
1 BASE OLS 4.46 [3.03 6.38] 991

0.75 [0.55 0.93]
2 R=1.00 OLS 4.50 [3.34 5.92] 996

0.67 [0.49 0.81]
3 R=1.04 OLS 4.26 [2.76 6.06] 987

0.78 [0.56 0.99]
4 β = 1.00 OLS 4.16 [2.52 6.50] 991

1.01 [0.73 1.26]
5 β = 1/1.08 OLS 4.78 [3.63 6.01] 997

0.65 [0.56 0.74]
6 g = .02 OLS 5.88 [3.27 9.44] 993

1.50 [1.03 1.87]
7 g = .06 OLS 3.94 [2.72 5.13] 990

0.50 [0.38 0.58]
8 ρ = 1 OLS 4.27 [3.55 4.99] 989

0.48 [0.41 0.54]
9 ρ = 5 OLS 5.52 [3.69 7.41] 993

0.93 [0.74 1.15]
10 σv = .05 OLS 5.01 [3.28 7.06] 986

1.15 [0.88 1.52]
11 σv = .15 OLS 3.71 [2.79 4.87] 995

0.47 [0.37 0.59]
12 σn = .05 OLS 5.16 [3.54 6.55] 998

0.44 [0.31 0.56]
13 σn = .15 OLS 4.24 [1.88 6.72] 994

1.50 [1.18 1.78]
14 BASE IV 8.05 [5.62 11.25] 991

1.58 [0.80 2.90]
15 R=1.00 IV 7.75 [5.95 10.87] 996

1.28 [0.74 2.41]
16 R=1.04 IV 7.88 [4.98 12.17] 987

1.72 [0.76 3.18]
Notes: Sample column indicates which parts of the simulated data are used.
Method column indicates whether OLS or IV is used.

Table 6: Second-Order Approximation Using Idiosyncratic Data
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Ludvigson findings of downward biases.16

If it were possible to be confident about the exact magnitude of the bias in the estimate

of ρ using this method, it might be at least remotely possible to obtain a reliable estimate

of the value of ρ by estimating an equation like (19) and then correcting for bias. However,

rows 2-13 of table 6 show that when the same estimation exercise is performed on each of

the other groups, the magnitude of the bias is somewhat affected by the value of the other

parameters in the model, both observable and unobservable. Without reliable independent

information on these parameters (particularly the taste parameters) at the individual level,

it is not possible to know the exact magnitude of the bias.

As a way of investigating the source of this bias, Figure 3 plots the true numerical

expectation of Et∆ log Ct+1 as a function of the level of cash-on-hand under the baseline

parameter values, along with the expected value of the second-order approximation (8).

The minimum and maximum values of xt for the plot are the first and 99th percentiles

in the ergodic distribution of xt that arises from the simulations. The figure shows that

the second order approximation does a remarkably poor job capturing the relationship

between cash-on-hand and expected consumption growth over the range of values of xt

that arise during the simulations. However, it is easy to see from this figure why the

coefficient estimates on η2
t+1 are biased upward: as wealth gets lower and lower (and

therefore η2
t+1 gets larger and larger), the second-order approximation falls further and

further below the true value of expected consumption growth. Since, in the regressions,

the coefficient on Etη
2
t+1 is not constrained to be ρ+1

2 , the regression chooses a much larger

value for that coefficient, with an offsetting adjustment to the intercept to get the mean

level of the function right.

Of course, in principle a high-enough order approximation to the Euler equation could

capture the expected consumption growth function arbitrarily well. However, figure 3

shows that even a fourth-order approximation does not do a very good job of capturing

the relationship between consumption growth and cash-on-hand. Given the limitations of
16I do not know why Laibson and Paxson and Ludvigson obtained downward biases. One possibility is

that their data may have been dominated by consumers who were effectively patient, while my consumers
are all impatient.
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Figure 3: True and Approximated Et∆ log Ct+1

actual data, it seems clear that it will not be possible to estimate the coefficient of relative

risk aversion with much precision using any plausible approximation to the consumption

Euler equation.

6.2 Good Ideas

6.2.1 Consumption Growth Regressions

It is important to make a distinction between estimating Euler equations and estimating

regressions of consumption growth on explanatory variables. Euler’s name is implicated

in the standard terminology as shorthand for the idea that one is estimating a first-order

condition from a maximization problem. While I believe that the arguments of this pa-

per demonstrate the impossibility of recovering a direct estimate of structural parameters

from consumption growth regressions, there are nevertheless several kinds of consump-

tion growth regressions that could be used to test important implications of models of

intertemporal optimization. Two such tests have already been implicitly suggested. Ta-

ble 2 showed that, under configurations of parameter values that generate buffer-stock

saving, a regression of consumption growth on the predictable component of permanent
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income growth should yield a coefficient near one, while the coefficient on the predictable

component of transitory income growth should be much smaller (around .10 for baseline

parameter values). These are eminently testable propositions.17

Given the results of Table 6, it even seems worthwhile to attempt to estimate an

equation of the form of the second-order approximation to the Euler equation (but only

if idiosyncratic data are used). The point of the earlier discussion of Table 6 was that the

coefficient on Ei,tη
2
i,t+1 did not yield an unbiased estimate of ρ. From a less structural point

of view, however, the lesson of the table is that for any tested set of parameter values the

model implies a hugely statistically significant relationship between consumption growth

and Ei,tη
2
i,t+1.

Of course, as a practical matter, an econometrician never observes each household’s

idiosyncratic expectations of a variable like η2
i,t+1, so the research strategy just described

cannot be implemented directly. However, in the theoretical model, Ei,tη
2
i,t+1 is a mono-

tonic function of cash-on-hand xi,t, which is observable. This suggests that it should be

possible to estimate the equation using xi,t (and perhaps higher moments of x) as instru-

ments for η2
i,t+1. Row 14 of table 6 presents the results when the equation is estimated

using xi,t and x2
i,t as instruments for η2

i,t+1. The coefficient estimate on the instrumented

η2
i,t+1 term remains highly statistically significant, and is even larger than the value that it

takes when the equation is estimated using the individual-specific values of Ei,tη
2
i,t+1 taken

from the model. Rows 15 and 16 show that similar results obtain for two of the other

groups of consumers; for brevity, results for the remaining groups are omitted. These last

three regressions are feasible in many if not most of the datasets that have been used

to estimate the traditional consumption Euler equation in the past. Estimating such an

equation would be a particularly easy task for any author who has estimated a traditional

Euler equation in one of these datasets and still has the computer code available.
17A hint of the answer, at least for predictable permanent growth, is already available: the work by

Carroll and Summers (1991) showing that consumption growth parallels income growth over most of
the working lifetime strongly suggests that when the experiment is performed properly the coefficient on
predictable low-frequency growth in income will be close to one; the results in Carroll (1994) also support
such an interpretation.
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6.2.2 Other Ideas

Another particularly promising avenue is to test the model’s predictions about the deter-

minants of target or buffer-stock wealth. Table 7 presents the results when the level of

wealth is regressed on the set of variables that are, in principle, observable at either the

individual level or the group level. The effects are all in the directions one would expect:

higher interest rates encourage more wealth-holding; higher permanent income growth

depresses wealth through standard human wealth channels; consumers facing higher in-

terest rates hold more wealth; consumers facing greater income uncertainty also hold more

wealth; and consumers who are more risk averse hold more wealth.18 Note that several

of these variables have very high degrees of statistical significance in the typical regres-

sion. To my knowledge, the only empirical tests thus far performed along these lines are in

Carroll and Samwick (1997), who find, using the PSID, that the variance of both the tran-

sitory and permanent shocks to income are positively and significantly related to wealth;

and Carroll and Weil (1997), who find a positive association between income growth and

saving, which they note is inconsitent with a buffer-stock model of saving.

In principle, it is even possible to estimate structural parameter values. A simple exam-

ple of how this can be done can be found in Carroll and Samwick (1997). Using data from

the PSID, they estimate a regression of household wealth on the variance of permanent

income shocks. Then, using a buffer-stock model similar to that used in this paper, they

determine the value of the rate of time preference such that, if similar regressions were

estimated in simulated data from the model, the coefficient estimates would be similar to

those obtained from the empirical work. This is a very simple example of a literature on

estimation by simulation; for a much more sophisticated example in a different context,

see Michaelides and Ng (1997).

Carroll and Samwick (1997) fixed all parameter values but one, and obtained only a
18It might seem surprising to list the coefficient of relative risk aversion among the observable variables.

However, two large survey datasets (the HRS and the PSID) have recently added questions explicitly
designed to elicit information about risk aversion. Kimball et al. (1997) report that these variables have
some plausible correlations with other observable variables. For example, consumers who report a high
degree of risk aversion are less likely to smoke. It would be very interesting to see if such households also
hold more wealth, ceteris paribus.
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Independent Coefficient Estimate
Row Variable Mean [.05-.95] Range NOBS R

2

1 R 1.80 [1.58,2.05] 2969 0.04
0.17 [0.16,0.17]

2 G -7.29 [-7.62,-6.98] 2970 0.33
0.19 [0.19,0.20]

3 σ2
n 14.48 [13.79,15.28] 2978 0.27

0.44 [0.42,0.45]
4 σ2

v 3.00 [2.38,3.63] 2966 0.02
0.36 [0.34,0.37]

5 ρ 0.23 [0.222,0.228] 2969 0.82
0.00 [0.002,0.002]

Notes: Assumption is that actual values of all variables are directly observed. IV estimation
is also possible and should produce consistent estimates.

Table 7: Regressions of Cash-On-Hand On Observable Variables

point estimate for that parameter. An even more ambitious project is to estimate several

parameters at once, in such a way that standard errors can also be obtained. Although the

technical and computational challenges are formidable, two recent papers have scored im-

pressive success in doing this. Parker and Gourinchas (1996) develop routines to quickly

solve and simulate a dynamic life cycle simulation model under arbitrary values of the

coefficient of relative risk aversion and the time preference rate. They then use an econo-

metric hill-climbing routine to search for the (ρ, δ) combination that causes their model to

best match data from the U.S. Consumer Expenditure Surveys. They obtain plausible and

tight parameter estimates for both ρ and δ. And Palumbo (1997) estimates a structural

model for precautionary saving for out-of-pocket medical expenditures by the elderly.

In sum, there are many possible avenues for testing models of intertemporal consump-

tion choice even if structural Euler equation estimation must be abandoned.

7 Conclusions

This paper argues that the estimation of consumption Euler equations using instrumental

variables methods on cross-section household data should be abandoned because it does

not yield any useful information. However, there are many other promising ways to
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test models of consumption under uncertainty, and even some ways to get estimates of

structural parameters; presumably inventive researchers can come up with many more

ways of testing the model.
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