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Abstract 

 

This paper adopts the backtesting criteria of the Basle Committee to compare the 

performance of a number of simple value-at-risk (VaR) models. These criteria 

provide a new standard on forecasting accuracy. Currently central banks in major 

money centers, under the auspices of the Basle Committee of the Bank of 

International settlement, adopt the VaR system to evaluate the market risk of their 

supervised banks. Banks are required to report VaRs to bank regulators with their 

internal models. These models must comply with the Basle’s backtesting criteria. 

If a bank fails the VaR backtesting, it will be imposed a higher capital 

requirements.  VaR is a function of volatility forecasts.  Past studies mostly 

conclude that ARCH and GRACH models provide better volatility forecasts. 

However, this paper finds that ARCH-based and GARCH-based VaR models 

consistently fail to meet with the Basle’s backtesting criteria. These findings 

suggest that the use of ARCH-based and GARCH-based models to forecast their 

VaRs is not a reliable way to manage a bank’s market risk.   
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1. Introduction 

 
Modeling and forecasting volatility of financial time series have been a popular 

research topic for the past several years. There are two major reasons for this 

development.  The first reason is the rapid growth of financial derivatives that 

requires volatility forecasts to calculate their fair prices. The second reason is the 

growing concern of risk management among financial institutions. Currently 

central banks in major money centers, led by the Basle Committee on Banking 

Supervision (see Basle Committee 1996a) of the Bank of International Settlement, 

require their supervised banks to measure market risk of their assets and trading 

books with value-at-risk (VaR). In order to constrain the risk-taking activities of 

banks, the Basle Committee links capital requirements on banks to the size of their 

VaRs. In brief, large VaRs result in more capital charges.  

VaR can be interpreted as a function of volatility forecasts.  By definition, 

VaR is an estimate (or forecast) of the amount that could be lost on a portfolio of 

assets.  Consider a portfolio of assets whose returns follow a normal distribution. 

VaR of the portfolio can be expressed as: 

(1) VaR = MVp ·  |min{E(Rp) - k · σp, 0}| 

 

where  MVp is the market value of the portfolio; E(Rp) is the expected portfolio 

return; k stands for the critical value for a required confidence level;  and σp is the 

volatility forecast of  the portfolio returns. Equation (1) ensures that VaR is a 

measure on the expected maximum trading loss of the portfolio. The size of the 

expected maximum trading loss depends on E(Rp), k and σp.  For simplicity, many 

banks estimate daily VaRs by assuming daily E(Rp) equal to zero.  In this case, 

daily VaRs can be written as: 

(2) VaR = MVp ·  k · σp 
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Both equations (1) and (2) show that VaR is positively related to volatility 

forecast (σp).  Larger volatil ity forecasts result in not only larger VaRs but also 

more capital charges imposed by central banks. In most circumstances, no 

commercial bank wants to have a higher capital requirement. An increase in 

capital charge increases the equity-asset ratio of a bank. As equity tends to have 

higher required rate of returns than debt or other sources of capital, the average 

cost of capital of the bank will rise. This may result in low profitability of the 

bank in terms of return on equity (ROE) and exert downward pressure on the 

bank’s stock prices. 

Forecasting VaRs can include simulation-based methods and parametric 

methods. These methods require some inputs of volatility forecasts. Previous 

studies on volatility forecasts, such as Akgiray (1989), Pagan and Schewert 

(1990), Ballie and Bollerslev (1992), West and Cho (1995), Brailsford and Ford 

(1966), Chu and Frend (1996), Frances and Dijk (1996),  Andersen and Bollerslev 

(1997), Brooks (1998), and Taylor (1999), generally forecast volatility by 

different time series models and measure predictive accuracy by mean absolute 

forecast errors or mean squared forecast errors. In all these studies, forecast error 

is defined as absolute gap between actual volatility (measured by a squared daily 

return) and forecasted volatility. A general conclusion from these studies is that 

GARCH-based models tend to have better performance in forecasting volatility 

than other time series models.   

Daily VaRs of banks and their internal VaR models are not publicly 

available information. In order to study the reliability of different VaR models, 

this paper selects a portfolio of stocks as a proxy of the net asset of a bank and 

then applies a number of VaR models to forecast its daily VaRs. The stock 

portfolio to be selected is the Australia’s All Ordinary Index (AOI). The AOI is a 

well-diversified portfolio of Australian companies. Australia economy has a wide 

range of business sectors, including mining of natural resources, exports of 

agricultural products, financial services, manufacturing, telecommunication and 

etc. This makes the AOI subject to various market risks in both the local and 

global markets, namely commodity risk, currency risk, interest rate risk and stock 
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market risk. The risk feature of the AOI is somewhat similar to that of a global 

bank that exposes itself vigorously to different financial markets.  

In this paper, we employ nine univariate time series models to generate 

volatility forecasts. They are random walk, AR(1), ARMA(1,1), ARCH(1), 

GARCH(1,1), AR(1) -ARCH(1), ARMA(1,1)-ARCH(1), AR(1)-GARCH and 

ARMA(1,1)-GARCH(1,1), are used to forecast the VaRs of the AOI returns and 

volatilities. These forecasts are then transformed to VaR forecasts. Previous 

research seldom evaluates the performance of VaR forecasts provided by ARCH-

based and GARCH-based models.1 This paper assesses the predictive accuracy of 

the VaR models by two criteria. The first assessment criterion is whether a model 

is able to comply with the backtesting criteria laid out by the Basle Committee 

(see Basle Committee 1996b). The second assessment criterion is the size of 

VaRs. These two criteria are more “practical” measures on predictive accuracy of 

VaR models. Banks will have additional capital charges as penalty if their VaR 

models fail to meet the backtesting cr iteria. Meanwhile, banks are required to have 

higher capital charges when they report larger VaRs. Therefore, banks prefer VaR 

models that are able to pass in backtesting and to provide small VaRs.  

Using 4,000 daily returns of the AOI as the sample, this paper finds that 

the ARCH-based and the GARCH -based VaR models consistently fail to comply 

with the Basle’s backtesting criteria. This finding suggest that the use of ARCH-

based and GARCH-based models to forecast VaRs is not a reliable way to manage 

a bank’s market risk.  This paper proceeds as follows. Section 2 introduces the 

Basle’s backtesting criteria on a VaR model and its VaR-based capital 

requirements. Section 3 describes the data and the VaR models to be used.  

Section 4 compares the accuracy of VaRs provided by the models. Section 5 

concludes the paper.  

 

                                                                 
1 Hendricks (1996) and Jackson and Perraudin (1998) evaluate different VaR models. These 
studies compare simulation-based VaR models and parametric VaR models with moving average 
volatility and do not include any ARCH-based or GARCH-based models.     
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2. The Basle’s Backtesting Criteria on VaR Models 

 

The Basle Committee does not specify strictly how banks should forecast VaRs.  

Banks are allowed to use internal VaR models. However, they are inclined to 

underestimate their VaRs since this helps reduce their capital charges. For this 

reason, the Basle Committee sets some requirements on VaR models used by 

banks to ensure their reliability (see  Basle Committee 1996).   The  requirements 

are as follows:  

 

a) Banks must use at least one year of data to estimate one-day and ten-day 

VaRs. 

 

b) Capital charge is equal to the three  times (this is known as capital multiplier) 

the 60-day moving average of 1% ten-day VaR estimates, or 1% ten-day VaR 

on the current day, whichever is higher.  

 

In addition, the Basle Committee (1996b) provides the following criteria for 

backtesting an internal VaR model:  

 

a) One-day VaRs are compared with actual one-day trading outcomes.   

 

b) One-day VaRs are required to be correct in 99% of backtesting days. There 

should be at least 250 days (around 1-year data) for backtesting. 

 

c) A VaR model fails in backtesting when it provides 5% or more incorrect 

VaRs.  

 

d) If a bank provides a VaR model that fails in backtesting, it will have their 

capital multiplier adjusted upward. This means that its capital charges will be 

larger.  
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Furthermore, the Basle Committee (1996b) defines accuracy of a VaR forecast by 

an actual loss smaller than a VaR forecast.  Mathematically, it can be written as:  

(3) VaRt+1  ≥  Actual trading Loss at time t+1 ,   where VaRt+1: VaR 

forecast at time t+1 made at time t.  

The Basle Committee requires that the above condition must holds at least in 99% 

of backtesting days. This definition of predictive accuracy provides a new 

standard on the accuracy of VaR forecasts.   

 

3. Data, Forecasting Models and Relative VaRs   

 

The sample in this study is the AOI from February 1983 to June 1999.  A total of 

4,000 daily returns are obtained.  In order to check the robustness of the findings, 

the whole period is divided into four subperiods of equal number of observations. 

Daily AOI returns (Rt) are computed with the following formula: 

(4) %100log
1

⋅







=

−t

t
t P

PR  ,  where Pt: AOI at time t 

 

This paper applies nine commonly-used univariate time se ries models to produce 

one-step-ahead return forecasts ( 1
ˆ

+tR ) and volatility forecasts ( $σt+1 ) of the AOI. 

These models are summarized as follows:  
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Forecasting Model One-step-ahead  
Return Forecast: 1

ˆ
+tR  

One-step-ahead  
Volatility Forecast: $σ t+1  

Random Walk 
01

ˆˆ β=+tR  0
2

1 ˆ)ˆ( γσ =+t  
AR(1) 

tt RR ⋅+=+ 101
ˆˆˆ ββ  0

2
1 ˆ)ˆ( γσ =+t  

ARMA(1,1) 
ttt RR εβββ ⋅+⋅+=+ 2101

ˆˆˆˆ  0
2

1 ˆ)ˆ( γσ =+t  
ARCH(1) 

01
ˆˆ β=+tR  2

10
2

1 )(ˆˆ)ˆ( tt εγγσ ⋅+=+  

AR(1)-ARCH(1) 
tt RR ⋅+=+ 101

ˆˆˆ ββ  2
10

2
1 )(ˆˆ)ˆ( tt εγγσ ⋅+=+  

ARMA(1,1)-ARCH(1) 
ttt RR εβββ ⋅+⋅+=+ 2101

ˆˆˆˆ  2
10

2
1 )(ˆˆ)ˆ( tt εγγσ ⋅+=+  

GARCH(1,1) 
01

ˆˆ β=+tR  2
2

2
10

2
1 )ˆ(ˆ)(ˆˆ)ˆ( ttt σγεγγσ ⋅+⋅+=+  

AR(1)-GARCH(1,1) 
tt RR ⋅+=+ 101

ˆˆˆ ββ  2
2

2
10

2
1 )ˆ(ˆ)(ˆˆ)ˆ( ttt σγεγγσ ⋅+⋅+=+  

ARMA(1,1)-GARCH(1,1) 
ttt RR εβββ ⋅+⋅+=+ 2101

ˆˆˆˆ  2
2

2
10

2
1 )ˆ(ˆ)(ˆˆ)ˆ( ttt σγεγγσ ⋅+⋅+=+  

 

The parameters in the above models are estimated at time t with observations of 

AOI returns from t-249 to t. This complies with the Basle’s requirement that VaRs 

must be estimated with data of not less than 250 days. All estimates are updated 

every trading day with observations of the most recent 250 days. Thus, the 

volatility forecasts of the random walk, AR(1) and ARMA(1,1) are simple 

standard deviation of forecast errors in the last 250 days.  

The above return and volatility forecasts are transformed to VaR forecasts 

in the following way. Since banks can hold either long or short positions on any 

financial assets, this paper considers both long and short positions of the AOI 

portfolio. This papers uses relative VaRs (denoted by RVt+1) to measure the size of 

VaRs. RVs is simply the maximum trading loss in return.  Using RV instead of 

nominal VaRs help generalize conclusions from our analysis to portfolios or 

banks of different size. Mathematically, RVs are obtained by:  

(5) Buying Long the AOI: |}0,ˆˆmin{| 111 +++ ⋅−= ttt kRRV σ  

(6) Selling Short the AOI: }0,ˆˆmax{ 111 +++ ⋅+= ttt kRRV σ  
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Equation (5) predicts the maximum loss (in return) for long positions in the next 

period, in which trading loss occurs when the AOI falls. Equation (6) predicts the 

maximum loss (in return) for short positions in the next period, in which trading 

loss occurs when the AOI rises. The 1
ˆ

+tR  and $σt +1  in the equations are obtained 

from the nine forecasting models. The k  is the critical value for a required 

confidence level.  This paper adopts a k (where k = 2.575) that corresponds a 99% 

two-tailed confidence level. Through this transformation, all the nine forecasting 

models become VaR models. Slightly modifying equation (3), this paper defines 

accuracy of RVs by     

(7) RVt+1  ≥  Actual trading loss (in return) at time t+1  

 

The following section will discuss the performance of RVs produced by the nine 

VaR models according to equation (7).    

 

4.  Forecasting Performance  

Performance of Return Forecasts 

Table 1 provides summary statistics on the daily AOI returns and return forecasts 

provided by the random walk, AR(1) and ARMA(1,1) models. Column (8) shows  

the mean square error (MSE) of the return forecasts, while Column (9) shows their  

mean absolute error (MAE). The first section shows the results in the whole 

period, while the others show the results of four subperiods. From both the MSE 

and MAE, we find no forecasting model consistently having superior performance 

in forecasting AOI returns in all the sample periods.   

  

Insert Table 1 around here 
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Size of Relative VaRs  

 

Table 2 shows the relative VaRs (RVs) provided by the nine VaR models at 99% 

confidence level.  The size of the RVs is a major concern since it can determine 

banks’ capital charges.  On the basis of equations (5) and (6), we obtain RVs for 

both long and short positions. They are shown respectively in Columns (5) and 

(6).  The “Average RV” in Column (4) is mean of RV(Long) and RV(Short). 

From Columns (4), (5) and (6), we find that the ARCH(1) and GARCH(1,1) 

models have remarkably large RVs  in the whole period.  However, this result is 

not robust because we do not find the same result in Periods 1, 3 and 4.  Excluding 

Period 2, we find that the random walk, AR(1) and the ARMA(1,1) models 

generally have larger RVs than other models.  

 

Accuracy of Relative VaRs 

 

Equation (7) has set the criterion of a correct RV forecast. The Basle Committee 

requires that a VaR model should be correct in 99% of backtesting days. A VaR 

model will fail if it provides 5% or more incorrect VaR forecasts. This pass/fail 

measure sets an objective standard for comparing the performance of the nine 

VaR models2.  We assume that a bank holds either a long or a short position on 

the AOI. When a RV for either a long or position cannot satisfy equation (7), we 

define it as an incorrect RV forecast. In other words, correct RVs imply that 

trading outcomes, being assumed to be normally distributed, must lie within a 

99% confidence interval.   

Table 3 shows the percentage of correct RVs and their size.  Banks 

generally want a pass (i.e. not less than 95% correct VaR forecasts) in backtesting 

their VaR models and small VaRs provided by the models.  Column (3) shows the 

number of correct RV forecasts and Column (4) shows the percentage of correct 
                                                                 
2 There are a number of theoretical and empir ical studies on techniques for evaluating VaR 
models, such as Kupiec (1995), Crnkovic and Drachman (1995), Christoffersen (1996), Jackson, 
Maude and Perraudin (1997) and Lopez (1998). This paper follows primarily the Basle’s 
evaluation system (1996b) since it has economic meanings for bank risk management.      
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RVs.  From Column (4), we find that the random walks, AR(1) and ARMA(1,1) 

models have more than 95% correct RVs. This implies that these models pass the 

backtesting. However, those ARCH-based and GARCH-based models all fail in 

backtesting.  Same results are found in all the subperiods. That is, ARCH-based 

and GARCH-based models generally fail, while other models pass. Column (5) 

exhibits the size of correct RVs.  Smaller RVs would suggest less capital 

requirements in relative terms. It is obvious that the ARCH-based and GARCH-

based models generally have smaller size of RVs in all the periods, except in 

Period 2.  Combining all the above results, we can conclude that ARCH-based and 

GARCH-based models can produce smaller VaRs but they tend to fail in 

backtesting.      

 

 

Insert Table 3 around here 

 

 

Size of Forecast Errors of Relative VaRs  

 

For those incorrect RVs, we measure the size of their errors by RV errors (VEs). 

A VE is the absolute difference between an actual trading loss (in return) and a 

RV.  Two summary statistics on VEs are provided, namely mean absolute VE 

(MAVE) and mean squared VE (MSVE).  Table 4 shows the MAVE and MSVE 

of the incorrect RV forecasts of both long and short positions.  From the MAVE 

and MSVE in the whole period, we find some mixed results. No model has 

consistently large forecast errors. In all the subperiods, there is no remarkable 

evidence that some VaR models have cons istently larger size of VEs. 
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Insert Table 4 around here 

 

5. Summary and Implications  

 

This paper addresses the issue of using value-a t-risk (VaR) for banking regulation 

and supervision.  In order to limit the risk-taking behavior of banks and reduce the 

likelihood of bank failures, many central banks, coordinated by the Basle 

Committee of the Bank of International Settlement, paid much attention to 

developing the VaR system in the past ten years. VaR is a measure on market risk, 

estimating the maximum trading loss that a bank can encounter.  Currently central 

banks in major money centers require their supervised banks to report VaRs. 

Banks can use their internal VaR models but their models must comply with the 

backesting criteria set by the Basle Committee. If a bank fails in backtesting, it 

will have additional capital charges as penalty.  

This paper mainly adopts the Basle’s  backtesting criteria to compare the 

performance of a number of simple VaR models.  The Basle’s backtesting criteria 

have economic implications to banks and provide a new standard for forecasting 

accuracy.  We deliberately select the Australia’s All Ordinary Index (AOI) as the 

sample. The AOI is a well-diversified asset portfolio that is subject to a wide 

range of market risks, including commodity risk, currency risk, interest rate risk 

and stock market risk. The VaR models in this paper are univariate time-series 

models. They may not be the VaR models practically adopted by banks.  In most 

cases, banks use simulation methods or  parame tric methods to obtain the VaRs of  

their ever-changing portfolios of assets, liabilities and off-balance-sheet items.  In 

practice, we do not know exactly which assets banks are holding. For this reason, 

we select a stock portfolio, i.e. the AOI, to act as  the proxy measure for a bank’s 

portfolio.  The VaR models in this paper, the simulation-based methods and the 

parametric models all require some inputs on volatility forecasts to produce VaRs.  

Consider that a simple bank that holds only one asset and the asset returns follow 

normal distribution. In this case, the VaR models in this paper, the simulation-
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based methods and the parametric methods tend to provide similar VaRs.  Thus, 

the accuracy of the VaR models in this paper will have implications for the 

accuracy of the VaR models used by banks.  

Past studies mostly conclude that ARCH and GRACH models can provide 

better volatility forecasts. Although VaR is just a function of volatility forecasts, 

this paper finds that ARCH-based and GARCH-based VaR mode ls consistently 

fail to pass in backtesting. This finding is robust across the whole and different 

subperiods in our study. This finding implies that the use of ARCH-based and 

GARCH-based models is not a reliable way for a bank to forecast VaRs and to 

manage its market risk.  
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Table 1  AOI  Returns and Return Forecasts in the Whole Sample Period and Subperiods   
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Sample Period Forecasting Model  Obs Mean SD  Minimum Maximum MSE of Point 
Forecast  

MAE of Point 
Forecast  

Whole Period Actual AOI Returns  4000 0.019 0.439 -12.491 2.635   
February 11, 1983 Forecasts [Random Walk Model] 4000 0.019 0.030 -0.070 0.106 0.275 0.193 

To Forecasts [AR(1) Model] 4000 0.017 0.196 -11.489 0.507 0.278 0.229 
June 11, 1999 Forecasts [ARMA(1,1) Model] 4000 0.018 0.201 -10.682 1.663 0.279 0.224 

Period 1 Actual AOI Returns  1000 0.046 0.347 -1.586 1.627   
February 11, 1983 Forecasts [Random Walk Model] 1000 0.038 0.022 -0.017 0.078 0.261 0.122 

To Forecasts [AR(1) Model] 1000 0.041 0.093 -0.434 0.507 0.257 0.118 
July 27, 1986 Forecasts [ARMA(1,1) Model] 1000 0.041 0.108 -0.524 0.713 0.256 0.118 

Period 2 Actual AOI Returns  1000 0.003 0.637 -12.491 2.431   
July 25, 1986 Forecasts [Random Walk Model] 1000 0.012 0.042 -0.070 0.106 0.324 0.408 

to  Forecasts [AR(1) Model] 1000 0.000 0.373 -11.489 0.268 0.335 0.549 

March 24, 1991 Forecasts [ARMA(1,1) Model] 1000 0.005 0.374 -10.682 1.663 0.335 0.522 

Period 3 Actual AOI Returns  1000 0.014 0.331 -1.322 1.104   

May 25, 1991 Forecasts [Random Walk Model] 1000 0.010 0.025 -0.038 0.078 0.254 0.110 
To Forecasts [AR(1) Model] 1000 0.012 0.056 -0.258 0.275 0.255 0.109 

March 24, 1995 Forecasts [ARMA(1,1) Model] 1000 0.012 0.065 -0.280 0.303 0.256 0.109 

Period 4 Actual AOI Returns  1000 0.014 0.365 -3.235 2.635   

March 25, 1995 Forecasts [Random Walk Model] 1000 0.015 0.011 -0.020 0.047 0.261 0.134 
To Forecasts [AR(1) Model] 1000 0.014 0.046 -1.127 0.154 0.263 0.141 

June 11, 1999 Forecasts [ARMA(1,1) Model] 1000 0.014 0.077 -1.440 0.337 0.267 0.146 
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Table 2  Size of Relative VaRs (RVs) of Different Forecasting Models  
(1) (2) (3) (4) (5) (6) 

   Relative VaR (RV) 
Sample Model Obs  Average RV  RV (Long) RV(Short ) 

Whole Period Random Walk Model 4000 1.035 1.016 1.053 
 AR(1) Model  4000 1.015 0.997 1.034 
 ARMA(1,1) Model  4000 1.007 0.987 1.026 
 ARCH (1) Model 4000 3.273 3.254 3.292 
 AR(1)-ARCH(1) Model  4000 1.211 1.194 1.228 
 ARMA(1,1)-ARCH(1) Model  4000 1.211 1.193 1.229 
 GARCH (1, 1) Model 4000 3.280 3.261 3.298 
 AR(1)-GARCH(1,1) Model  4000 1.253 1.236 1.270 
 ARMA(1,1)-GARCH(1,1) Model 4000 1.253 1.235 1.270 

Period 1 Random Walk Model 1000 0.904 0.866 0.942 
 AR(1) Model  1000 0.877 0.836 0.918 
 ARMA(1,1) Model  1000 0.872 0.831 0.913 
 ARCH (1) Model 1000 0.319 0.281 0.357 
 AR(1)-ARCH(1) Model  1000 0.300 0.259 0.341 
 ARMA(1,1)-ARCH(1) Model  1000 0.300 0.259 0.341 
 GARCH (1, 1) Model 1000 0.329 0.290 0.367 
 AR(1)-GARCH(1,1) Model  1000 0.313 0.272 0.354 
 ARMA(1,1)-GARCH(1,1) Model 1000 0.313 0.272 0.354 

Period 2 Random Walk Model 1000 1.444 1.432 1.456 
 AR(1) Model  1000 1.411 1.407 1.415 
 ARMA(1,1) Model  1000 1.386 1.377 1.395 
 ARCH (1) Model 1000 12.090 12.078 12.102 
 AR(1)-ARCH(1) Model  1000 3.909 3.909 3.909 
 ARMA(1,1)-ARCH(1) Model  1000 3.909 3.904 3.914 
 GARCH (1, 1) Model 1000 12.071 12.059 12.083 
 AR(1)-GARCH(1,1) Model  1000 4.032 4.032 4.033 
 ARMA(1,1)-GARCH(1,1) Model 1000 4.033 4.030 4.035 

Period 3 Random Walk Model 1000 0.881 0.871 0.891 
 AR(1) Model  1000 0.860 0.848 0.872 
 ARMA(1,1) Model  1000 0.859 0.847 0.871 
 ARCH (1) Model 1000 0.296 0.286 0.307 
 AR(1)-ARCH(1) Model  1000 0.291 0.278 0.303 
 ARMA(1,1)-ARCH(1) Model  1000 0.291 0.278 0.303 
 GARCH (1, 1) Model 1000 0.303 0.293 0.313 
 AR(1)-GARCH(1,1) Model  1000 0.297 0.285 0.309 
 ARMA(1,1)-GARCH(1,1) Model 1000 0.297 0.285 0.309 

Period 4 Random Walk Model 1000 0.910 0.895 0.925 
 AR(1) Model  1000 0.914 0.900 0.928 
 ARMA(1,1) Model  1000 0.911 0.896 0.925 
 ARCH (1) Model 1000 0.387 0.372 0.402 
 AR(1)-ARCH(1) Model  1000 0.344 0.330 0.358 
 ARMA(1,1)-ARCH(1) Model  1000 0.344 0.329 0.359 
 GARCH (1, 1) Model 1000 0.415 0.401 0.430 
 AR(1)-GARCH(1,1) Model  1000 0.369 0.355 0.383 
 ARMA(1,1)-GARCH(1,1) Model 1000 0.369 0.355 0.383 
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Table 3      Percentage of Correct RV Forecasts and their Size  

(1) (2) (3) (4) (5) 
  Correct RV Forecasts 

Sample Model  Number  Percentage  Size  
Whole Period Random Walk Model 3928 98.20% 1.037 

 AR(1) Model  3920 98.00% 1.015 

 ARMA(1,1) Model  3915 97.88% 1.008 
 ARCH (1) Model  2754 68.85% 4.624 

 AR(1)-ARCH(1) Model  2725 68.13% 1.647 
 ARMA(1,1)-ARCH(1) Model  2716 67.90% 1.652 
 GARCH (1, 1) Model 2725 68.13% 4.692 
 AR(1)-GARCH(1,1) Model  2679 66.98% 1.744 

 ARMA(1,1)-GARCH(1,1) Model 2666 66.65% 1.751 

Period 1 Random Walk Model 977 97.70% 0.905 

 AR(1) Model  974 97.40% 0.878 
 ARMA(1,1) Model  975 97.50% 0.873 

 ARCH (1) Model  668 66.80% 0.337 
 AR(1)-ARCH(1) Model  656 65.60% 0.314 
 ARMA(1,1)-ARCH(1) Model  656 65.60% 0.314 

 GARCH (1, 1) Model 672 67.20% 0.353 
 AR(1)-GARCH(1,1) Model  647 64.70% 0.335 

 ARMA(1,1)-GARCH(1,1) Model 649 64.90% 0.333 

Period 2 Random Walk Model 988 98.80% 1.444 

 AR(1) Model  983 98.30% 1.405 
 ARMA(1,1) Model  982 98.20% 1.383 

 ARCH (1) Model  792 79.20% 15.172 
 AR(1)-ARCH(1) Model  791 79.10% 4.856 

 ARMA(1,1)-ARCH(1) Model  791 79.10% 4.859 
 GARCH (1, 1) Model 796 79.60% 15.090 

 AR(1)-GARCH(1,1) Model  773 77.30% 5.137 
 ARMA(1,1)-GARCH(1,1) Model 765 76.50% 5.187 

Period 3 Random Walk Model 981 98.10% 0.882 
 AR(1) Model  983 98.30% 0.861 
 ARMA(1,1) Model  982 98.20% 0.860 

 ARCH (1) Model  641 64.10% 0.311 
 AR(1)-ARCH(1) Model  631 63.10% 0.304 

 ARMA(1,1)-ARCH(1) Model  627 62.70% 0.304 
 GARCH (1, 1) Model 635 63.50% 0.326 
 AR(1)-GARCH(1,1) Model  632 63.20% 0.321 
 ARMA(1,1)-GARCH(1,1) Model 630 63.00% 0.321 

Period 4 Random Walk Model 982 98.20% 0.913 
 AR(1) Model  980 98.00% 0.916 

 ARMA(1,1) Model  976 97.60% 0.913 
 ARCH (1) Model  653 65.30% 0.448 

 AR(1)-ARCH(1) Model  647 64.70% 0.383 
 ARMA(1,1)-ARCH(1) Model  642 64.20% 0.384 

 GARCH (1, 1) Model 622 62.20% 0.530 
 AR(1)-GARCH(1,1) Model  627 62.70% 0.450 
 ARMA(1,1)-GARCH(1,1) Model 622 62.20% 0.453 
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Table 4    Absolute and Squared Errors of Incorrect RV Forecasts  
 

  Long Position Short Position 

(1) (2) (3) (4) (5) (6) 
Sample Model  MAVE MSVE MAVE MSVE 

Whole Period Random Walk Model 0.693 3.570 0.260 0.195 
AR(1) Model  0.697 3.557 0.274 0.302 
ARMA(1,1) Model  0.638 3.210 0.271 0.298 
ARCH (1) Model  0.247 0.389 0.194 0.072 
AR(1)-ARCH(1) Model  0.247 0.383 0.191 0.066 
ARMA(1,1)-ARCH(1) Model  0.246 0.381 0.192 0.068 
GARCH (1, 1) Model 0.253 0.378 0.198 0.077 

(Sample Size 
= 4000) 

AR(1)-GARCH(1,1) Model  0.244 0.346 0.196 0.075 
 ARMA(1,1)-GARCH(1,1) Model 0.247 0.349 0.194 0.074 

Period 1 Random Walk Model 0.161 0.075 0.272 0.141 
AR(1) Model  0.175 0.093 0.208 0.096 
ARMA(1,1) Model  0.189 0.097 0.280 0.151 

(Sample Size 
= 1000) 

ARCH (1) Model  0.216 0.093 0.203 0.078 
 AR(1)-ARCH(1) Model  0.212 0.091 0.198 0.074 
 ARMA(1,1)-ARCH(1) Model  0.214 0.092 0.195 0.075 
 GARCH (1, 1) Model 0.223 0.098 0.195 0.074 
 AR(1)-GARCH(1,1) Model  0.201 0.084 0.187 0.064 
 ARMA(1,1)-GARCH(1,1) Model 0.207 0.087 0.183 0.064 

Period 2 Random Walk Model 2.153 14.740 0.663 0.440 
AR(1) Model  1.900 12.930 0.405 0.368 
ARMA(1,1) Model  1.894 12.943 0.293 0.243 
ARCH (1) Model  0.410 1.788 0.183 0.077 
AR(1)-ARCH(1) Model  0.423 1.805 0.171 0.049 
ARMA(1,1)-ARCH(1) Model  0.411 1.783 0.180 0.055 

(Sample Size 
= 1000) 

GARCH (1, 1) Model 0.446 1.799 0.191 0.080 
 AR(1)-GARCH(1,1) Model  0.411 1.531 0.187 0.079 
 ARMA(1,1)-GARCH(1,1) Model 0.393 1.480 0.188 0.081 

Period 3 Random Walk Model 0.131 0.030 0.136 0.029 
AR(1) Model  0.133 0.030 0.152 0.032 
ARMA(1,1) Model  0.131 0.026 0.149 0.031 

(Sample Size 
= 1000) 

ARCH (1) Model  0.203 0.072 0.199 0.072 
 AR(1)-ARCH(1) Model  0.195 0.066 0.201 0.072 
 ARMA(1,1)-ARCH(1) Model  0.195 0.067 0.196 0.068 
 GARCH (1, 1) Model 0.196 0.068 0.202 0.074 
 AR(1)-GARCH(1,1) Model  0.196 0.065 0.202 0.074 
 ARMA(1,1)-GARCH(1,1) Model 0.200 0.067 0.195 0.070 

Random Walk Model 0.462 0.603 0.407 0.562 
AR(1) Model  0.473 0.569 0.444 0.890 

Period 4 
(Sample Size 

= 1000) ARMA(1,1) Model  0.379 0.438 0.397 0.790 
 ARCH (1) Model  0.220 0.101 0.188 0.064 
 AR(1)-ARCH(1) Model  0.227 0.114 0.185 0.063 
 ARMA(1,1)-ARCH(1) Model  0.230 0.115 0.191 0.066 
 GARCH (1, 1) Model 0.224 0.101 0.201 0.080 
 AR(1)-GARCH(1,1) Model  0.227 0.107 0.204 0.082 
 ARMA(1,1)-GARCH(1,1) Model 0.232 0.110 0.206 0.081 
      

NB:  
MAVE: Mean absolute errors of incorrect RV forecasts 
MSVE: Mean squared errors of incorrect RV forecasts 
 
  


