
Chapter 3

Dynamic optimization and utility

functions

This chapter offers a brief account of one of the leading approaches to solving dynamic

optimization problems and how the so called Euler equation can be derived. We will apply

the Lagrange multiplier method (applying the Kuhn–Tucker Theorem) and show how the

Euler equation is derived within both OLG and Ramsey models. In addition, we briefly

discuss some specific utility functions that we will use in the next chapter when studying

consumption theory. For a more detailed discussion about dynamic optimization and

other methods to solving optimization problems the reader should consult for example

Dixit (1990), Sydsæter och Hammond (1995) or Obstfeld and Rogoff (1996).

3.1 The Euler equation within a 2–period model

Let us consider a 2 period model with one consumer good. Assume also that the utility

function is intertemporally additive, i.e., the rate of substitution between consumption

on any two dates is independent of consumption on any third date. Thus, we rule out

any intertemporal consumption dependencies such as habit formation. The individual

maximizes the utility of consumption over the two dates given labor income:

U = U (C1) + βU (C2) 0 < β < 1 (3.1)

where c is consumption and β = 1/ (1 + θ) is a measure of the individual’s impatience to

consume, where θ is the the subjective rate of time preference. The utility function U (C)

is increasing in consumption and strictly concave: U ′ (C) > 0, U ′′ (C) < 0. In addition we

assume that limC→0 U ′ (C) = ∞ which implies that the individual always desire at least

a little consumption in every period, i.e., consumption is always positive so we don’t have

to add the constraint that Ci ≥ 0 to the maximization problem.

The individual maximizes the utility in (3.1) with respect to the budget constraints

C1 = Y1 −B1 (3.2)
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and

C2 = Y2 + (1 + r) B1 (3.3)

where Y is labor income and B is the value of net assets at the end of period t (savings).

Use equation (3.2) to solve for B1 and insert into (3.3) such that the budget restriction

can be written as

C1 +
C2

1 + r
= Y1 +

Y2

1 + r

which states that the present value of consumption is equal to the present value of labor

income. Note that we rule out inheritance. To find a solution to the optimization problem,

i.e., determine C1 and C2, we form the Lagrangian

L = U (C1) + βU (C2)− λ

[
C1 +

C2

1 + r
− Y1 −

Y2

1 + r

]
.

and then differentiating it partially with respect to consumption in the two periods. The

first order conditions are
∂L

∂C1

= U ′ (C1)− λ = 0

and
∂L

∂C2

= βU ′ (C2)− λ

[
1

1 + r

]
= 0.

Eliminate the Lagrange multiplier by taking the ratio of these two first order conditions

such that

U ′ (C1) = (1 + r) βU ′ (C2) . (3.4)

This is the intertemporal Euler equation which is the necessary condition for optimum.

The Euler equation has a simple interpretation: at a utility maximum, the individual

cannot gain from redistributing consumption between periods. A one unit reduction in

first period consumption lowers the utility in this period by U ′ (C1). The consumption

unit which is now saved in the first period can be converted into 1 + r units of second

period consumption that raise second period utility by (1 + r) βU ′ (C2) units. The Euler

equation states that these two quantities are equal at an optimum.

The Euler equation (3.4) can also be written in the following way

βU ′ (C2)

U ′ (C1)
=

1

1 + r

where the LHS is the individual’s marginal rate of substitution between consumption in

the two periods whereas the RHS is the price of future consumption in terms of present

consumption. We can also illustrate the Euler equation in a graph, see figure 3.1. Point

A in Figure 3.1 is the optimum where the slope of the indifference curve is equal to the

slope of the budget line, i.e., where

U ′ (C1)

βU ′ (C2)
= (1 + r) .
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Figure 3.1: Consumption over time and the Euler equation.
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Assume now that β (1 + r) = 1. Under this assumption, the Euler equation reduces

to

U ′ (C1) = U ′ (C2) .

This implies that the individual prefer to smooth consumption over time such that C1 =

C2 = C̄.1 If we insert this solution into the budget restriction we obtain

C̄ =
[(1 + r) Y1 + Y2]

2 + r

which, if we assume that r = 0, is

C̄ =
Y1 + Y2

2

implying that consumption in the two periods is equal to the average of labor income.

Consequently, the optimum must then be located on a 450–degree line as is shown in

Figure 3.2. This is the permanent income theory.

3.2 The Euler equation in a Ramsey model

Let us now extend the number of periods to T periods. In this case the individual seeks to

maximize a sequence of consumption over all time periods, i.e., ct, ct+1, . . . that maximizes

utility. The optimization problem can then be formulated as

max
t+T∑
s=t

βs−tU (Cs)

1The reason is that in this case the expected marginal utility from consumption in period two is equal
to the present marginal utility from consumption.
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Figure 3.2: Consumption over time when β = 1 and r = 0.
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with respect to

t+T∑
s=t

(
1

1 + r

)s−t

Cs = (1 + r) Bt +
t+T∑
s=t

(
1

1 + r

)s−t

Ys.

The Lagrangian is therefore

L =
t+T∑
s=t

βs−tU (Cs)− λ

[
t+T∑
s=t

(
1

1 + r

)s−t

Cs − (1 + r) Bt +
t+T∑
s=t

(
1

1 + r

)s−t

Ys

]

and the first order conditions with respect to consumption at time s is

∂L

∂Cs

= βs−t ∂U

∂Cs

− λ

(
1

1 + r

)s−t

= 0

and for time period s + 1

∂L

∂Cs+1

= βs+1−t ∂U

∂Cs+1

− λ

(
1

1 + r

)s+1−t

= 0.

Eliminating the Lagrange multiplier as we did above yields

U ′ (Cs) = (1 + r) βU ′ (Cs+1) (3.5)

which is identical to the Euler equation within the 2–period model above. Note also that

if we substitute the Euler equation forward we find that for any T ≥ 0

U ′ (Ct) = (1 + r)T βT U ′ (Ct+T ) (3.6)
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From this follows that as time goes to infinity, the Euler equation can still be formulated

as (3.5) and (3.6). If we in addition also assume uncertainty so that the individual use all

available information at time t, the optimization problem can be formulated as follows

max E

[
t+T∑
s=t

βs−tU (Cs) |t
]

with respect to
t+T∑
s=t

(
1

1 + r

)s−t

Cs =
t+T∑
s=t

(
1

1 + r

)s−t

Ys.

The Euler equation can then be written as (given that the interest rate r is constant and

known at time t)

U ′ (Ct) = (1 + r) βE [U ′ (Ct+1) |t]
which is identical to the earlier Euler equations except for the inclusion of the expectations

operator.

Finally, let us assume that there are i ∈ I assets in the economy instead of just one

as we assumed in the models above. The rate of return from an asset i at time t + 1 is

ri
t+1. Assume also that this return is uncertain. In this case we have one Euler equation

for each asset i given by

U ′ (Ct) = βE
[(

1 + ri
t+1

)
U ′ (Ct+1) |t

]
for all i ∈ I.

3.3 Utility functions

In the models analyzed above, we did not specify the utility functions. Let us in this

section define a number of utility functions that we will use in the next chapter in the

context of consumption theory, i.e., constant relative risk aversion, constant absolute risk

aversion and quadratic utility functions.

3.3.1 Constant relative risk aversion (CRRA)

The constant relative risk aversion (CRRA) utility function (see Romer (2001, pp. 48) is

given by

U (C) =
C1−γ

1− γ
for γ > 0, γ 6= 1,

= ln C for γ = 1

where 1/γ is the intertemporal substitution elasticity between consumption in any two

periods, i.e., it measures the willingness to substitute consumption between different pe-

riods. The smaller γ (the larger 1/γ), the more willing is the household to substitute
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consumption over time. Note also that γ is the coefficient of relative risk aversion.2 Since

the coefficient of relative risk aversion is constant, this utility function is known as con-

stant relative risk aversion (CRRA) utility.

There are three other properties that are important. First, the CRRA utility function

is increasing in C1−γ if γ < 1 but decreasing if γ > 1. Therefore, dividing by 1 − γ

ensures that the marginal utility is positive for all values of γ. Second, if γ → 1, the

utility function converges to ln Ct.
3 Third, U ′′′ (C) > 0, implying a positive motive for

precautionary saving. Therefore, we often use this utility function when studying savings

behavior.

3.3.2 Constant absolute risk aversion (CARA)

The other class of utility functions often used in intertemporal models is the following

exponential utility function

U (C) = − 1

α
exp (−αC) α > 0

which is known as the constant absolute risk aversion (CARA) utility. For this utility

function, U ′ (C) = exp (−αC) and U ′′ (C) = −α exp (−αC). Applying the definition of

the coefficient of constant absolute risk aversion −U ′′ (C) /U ′ (C) we find that α is the

coefficient of absolute risk aversion.4 Constant absolute risk aversion is usually viewed

as a less credible description of risk aversion compared to relative risk aversion, but the

CARA–utility function is often a more convenient specification analytically. As is the

case with CRRA utility, the CARA function implies a positive motive for precautionary

saving.

3.3.3 Quadratic utility function

The third class of utility functions we will use below is the quadratic utility function

U = C − a

2
C2, a > 0

2This can be seen if we use the Arrow–Pratt definition of the coefficient of relative risk averision:

−CU ′′(C)
U ′(C)

.

3To show that the utility function converges to logarithmic as γ → ∞ we make use of L’Hospital’s
rule. As γ →∞, the numerator and denominator of the function both approach zero. Differentiate both
the numerator and the denominator with respect to γ and then take the limit of the derivatives’ ratio as
γ →∞ we find that the utility function converges to lnC.

4Note that the coefficient for relative risk aversion is equal to αC such that the degree of risk aversion
is increasing in consumption.
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where the marginal utility is linear, see Romer (2001, pp. 337).5 As for the earlier two

utility functions, U ′ (C) = 1 − aC > 0 (assuming that the parameter a is sufficiently

small in relation to C) while U ′′ (C) = −a < 0. Since U ′′′ = 0 there is no motive for

precautionary saving. This utility function is mainly used in the context of permanent

income and life cycle hypotheses.

5Note that we in this case consider only the case when C ∈ [
0, 1

a

]
. The reason is that the utility

function is not strictly concave if C < 1
a .


