
Most people acknowledge that some correlation between operational losses exists. 
Modelling it, however, is a complex issue. The questions arise: How can this be done? Is 
it beneficial? As is shown, including correlations in the calculation of operational capital 
can have a significant effect on the level of reserve capital required to cushion against the 
risk of operational losses. This article focuses on positively correlated events that arise 
from a single root cause. It also provides an example of how such events might be 
incorporated into operational risk measures.
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Intuitively, operational loss events are corre-
lated. Consider, for example, an electrical fail-
ure. This failure might affect all desks on the 
trading floor. Each desk would need to file a 
claim for lost income during the downtime and 
possibly for time required to ensure that all pre-
vious trades have been processed correctly. 
Clearly, this single event must be capitalized, 
but by which profit center? In attempting to 
allocate capital fairly among businesses, a 
more complex model is required�one that 
allows for common events to affect multiple 
business units.

In fact, as shall be seen, failure to acknow-
ledge and account for this type of correlation 
between losses experienced in different busi-
nesses�and other positive correlations 
between events�leads to an understatement 
of the capital reserves that are required. 
One might argue that this increase in capi-
tal charge is undesirable. However, the goal 
of risk-sensitive capital reserves should be 
just that: to reflect properly all of the risk 
assumed. Also, it is entirely conceivable that 
charges related to correlations will become part 

of the regulatory process, as is the case for 
credit risk. 

This article presents a simple model that allows 
for the incorporation of positive correlations 
between operational units. However, before the 
model can be specified, some groundwork is 
required.

First, one must define a set of operational units 
to be modelled. For a complete definition of 
operational units, see Reynolds and Syer 
(2002a). Common examples include the event 
types and business lines�defined by the Basel 
Commission on Banking Supervision�actual 
organizational structures, and geographical 
locations. Each operational unit is allocated its 
related data. Typically, this would be loss data, 
but other data may also be used. 

Second, an analysis of the data is done to 
determine whether one operational loss process 
per operational unit is sufficient, or whether 
several processes should be used to obtain a 
better fit to the data. Frequently, however, due 
to the paucity of data, this analysis results in 
each operational unit being modelled by a 
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single loss process, and independently of the 
other units.

As with many advanced approaches to the 
measurement of operational risk, an actuarial 
model is used. This is described in Reynolds 
and Syer (2002b). This approach divides the 
operational loss process into two components: 
frequency, which is the number of losses per 
period, and severity, which is the size of an 
individual loss. Each line of business, or event 
type, is assigned its own model for frequency 
and severity of losses that occur within an opera-
tional unit.

By correlating the frequency of loss across opera-
tional units, one effectively correlates the total 
loss across operational units. The model pre-
sented here focuses on the correlation of loss fre-
quency across operational units through an 
underlying �common cause� approach. 

The operational loss processes are modelled by 
representing the loss frequency as a combination 
of Poisson distributions, while allowing each 
severity distribution to follow any data-appropri-
ate distribution. A discussion of the Poisson dis-
tribution and its principal properties provides 
essential background to understanding the over-
all model and its calibration.

Following an introduction to the Poisson distri-
bution, the joint-frequency model is presented 
and discussed using a small example. A method 
of calibrating the joint model is then presented, 
and the example is extended to enrich the dis-
cussion. The paper concludes with some 
thoughts for future directions of research.

Poisson distribution

Named after the French mathematician Siméon 
Poisson (1781�1840), the Poisson distribution 
describes the number of events that occur in a 
given interval of time, when the probability of 
the event occurring is very small, but the num-
ber of trials is very large. The Poisson distribu-
tion is formally defined as

where P(n) is the probability that n events hap-
pen over a time interval of length t, and  is the 
intensity or rate at which events happen per unit 
of time. 

The distribution was studied more rigorously 
by the Russian-born statistician Ladislaus von 
Bortkiewicz (1868�1931), in his monograph, 
Das Gesetz der kleinen Zahlen. In his book (Bort-
kiewicz 1898), one can find an early, and 
perhaps the first, application of the Poisson dis-
tribution to operational risk. Von Bortkiewicz 
analysed data, collected on the number of sol-
diers kicked to death each year by horses in the 
Prussian army, and found an extremely good fit 
with the Poisson distribution.

Although today�s applications of the Poisson dis-
tribution to model the frequency of operational 
losses are less dramatic, it is still a viable and 
widely used model. One reason is that it is a sim-
ple model, since only one parameter must be 
estimated to specify the Poisson distribution�its 
mean. The property that the variance is equal to 
the mean is important for ease of calibration, as 
is seen in a subsequent section.

Another important property of the Poisson 
distribution is that it is a stable distribution: add-
ing two Poisson processes with intensities 
and  creates another Poisson process with 
intensity .

The Poisson distribution is well documented 
and, hence, one may draw on a large body 
of existing knowledge, see for instance, Haight 
(1967), Johnson and Kotz (1969) and 
Kingman (1993).

Dependent processes with Poisson 
marginals

Consider a set of operational events. Modelling 
many types of events simultaneously, to account 
for many types of operational loss processes and 
many business initiatives, is critical. This section 
provides a discussion of a bivariate model, and 
then generalizes it to a multivariate formulation. 
It concludes with a worked example based on 
the event types dictated by the Quantitative P n( ) λ t( )n
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Impact Study (QIS) of the Basel Committee on 
Banking Supervision (BCBS). See the study by 
the Bank of International Settlements (2001).

Two operational loss processes

First, consider the events originating from 
two operational loss processes and , and 
model these events by two separate Poisson 
distributions. For a fixed period of time, over 
which the events are recorded (typically one 
month or one year), let and be the num-
ber of events of the operational processes  
and , respectively.

Under these assumptions, will follow a Pois-
son distribution with intensity , so that the 
mean and the variance of the number of events 
are both equal to . The same applies to , 
with corresponding intensity .

To complete the specification of the model, 
it is necessary to specify the dependence 
between and . The simplest assumption 
is, of course, to assume that they are indepen-
dent. But, what if experience indicates that 
the events in  tend to coincide with the 
events in ? From a risk management per-
spective, the ability to model simultaneous 
events in the processes  and  then becomes 
paramount.

There is a need for multivariate arrival pro-
cesses that are capable of modelling the 
joint events in many processes. Individually, 
the events in each process remain Poisson dis-
tributed with a separate occurrence rate. One 
way to do this is to create three underlying 
loss processes. Assume ,  and  are 
independent Poisson processes with intensities 

,  and , respectively. If 

 (1)

is taken as the underlying relationship, a two-
dimensional process that exhibits dependence 
is obtained. Denote the number of events of type 

,  and  by ,  and , respectively. 
The distributions of 

 (2)

each have Poisson marginal distributions, with 
mean  and , respec-
tively. However, the two components are now 
dependent. Their covariance and correlation 
coefficient are given by: 

and

 

From this one sees that, by introducing a set of 
underlying, abstract variables, each following a 
Poisson distribution, one can create dependent 
distributions for the frequencies of two loss pro-
cesses, while maintaining their marginal distri-
butions as Poisson.

Multiple operational loss processes

The example easily generalizes to the multi-
dimensional case, where there are several 
processes. Suppose one has n observed pro-
cesses , for which one wants to 
model a dependent structure. To do this, m 
underlying Poisson processes are considered, 
with intensities , and a corre-
sponding number of events . Each of these 
underlying processes can be assigned to one 
or more of the observed processes, which can 
be captured by introducing the indicator vari-
ables :

The number of events  of process  then fol-
lows a Poisson distribution with intensity

 (3)

This dependence model has an intuitive 
interpretation: it postulates the existence of 

Y1 Y2

N1 N2

Y1

Y2

N1

µ1

µ1 N2

µ2

N1 N2

Y2

Y1

Y1 Y2

X1 X2 X3

λ1 λ2 λ3

Y1 X1 X3,+=

Y2 X2 X3+=

X1 X2 X3 M1 M2 M3

N1 M1 M3,+=

N2 M2 M3+=

µ1 λ1 λ3+= µ2 λ2 λ3+=

Cov N1 N2,( ) Var M3( ) λ3,= =

ρ
λ3

λ1 λ3+( ) λ2 λ3+( )
--------------------------------------------------.=

Yj, j 1= , …, n

λ i, i 1= , …, m
Mi

δij

Nj δi jMi.
i 1=

m

∑=

Nj Yj

µj δi jλ i.
i 1=

m

∑=
ALGO RESEARCH QUARTERLY SUMMER 200267



Dependent events and operational risk
events that affect more than one operational 
unit. This type of event may be thought of as a 
common-cause event, affecting all processes . 
The covariance and correlation coefficients are 
readily determined as: 

and,

 (4)

The covariance structure is more easily 
described in matrix notation as

 (5)

where C is the covariance matrix,  is an 
 incidence matrix, describing the relation-

ship between the observed and the underlying 
processes, and  is a diagonal ma-
trix with the intensities  as the elements. Note 
that all elements of the covariance matrix are 
nonnegative (and, hence, also all correlations), 
because all the elements of the matrices  and 

 are nonnegative.

Monte-Carlo simulations

To illustrate the model, we employ the same 
classification scheme used by the BCBS in col-
lecting data for QIS. It divides risk into seven 
broad categories: 

� Internal Fraud 

� External Fraud

� Employment Practices 

� Business Services

� Physical Assets 

� Business Disruption, and 

� Process Management.

For the sake of completeness, an eighth category 
is included, �Other Risks,� to allow for anything 
that does not fall into one of the QIS categories.

Independent events

First, assume that there are eight, independent, 
underlying loss processes: one specific to each 
risk category, and that all processes have a Pois-
son distribution with mean . Thus, the 
expected frequency of events is once every two 
years. Given an event, let the resulting losses be 
independent and normally distributed with a 
mean of US $4M and a standard deviation of US 
$0.5M for all processes. This situation is 
depicted in Figure 1.

To gain insight into the shape of the distribution 
of the company-wide losses, a Monte-Carlo sim-
ulation with 10,000 scenarios was performed. 
The resulting, empirical distribution is depicted 
in Figure 2. The 99% quantile of this distribu-
tion is US $37.82M.

Dependent events

To create dependencies between the processes, 
take the previous model, but with intensities 0.4
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 Figure 1: Independent loss processes; each 
process follows a Poisson distribution with 

intensity λ 0.5=
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Independent Events
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     Figure 2: Empirical distribution of company-wide losses under the independent model, using
                  a Monte Carlo simulation with 10,000 scenarios; the 99% quantile is $37.82M
for all the independent loss processes, and 
introduce a single enterprise-wide source of 
loss, modelled by a Poisson distribution with 
intensity . The number of losses, 
experienced in each risk class, is now a combi-
nation of the overall number of losses experi-
enced due to firm-wide issues and the losses 
specific to the risk class. This model is depicted 
in Figure 3.

Note that the marginal distributions of the 
events are still Poisson with one event expected 
every two years. However, the losses are now 
dependent with a pairwise correlation of 0.2, as 
calculated using Equation 4. This implies that 
differences in the loss distribution are due solely 
to the effect of correlations and not to changes 
in the marginal distribution.

Another Monte-Carlo simulation with 10,000 
scenarios was performed, and the resulting 
empirical distribution is shown in Figure 4. The 
99% quantile of this distribution is US $59.19M, 
while the expected losses remain the same as in 
the independent case.

Comparison

It is evident that the overall budget require-
ments, as measured by the expected losses, are 
not affected by the correlation between events. 
However, the risk, as measured by the unex-
pected losses, has increased considerably by the 
inclusion of these firm-wide events. A cursory 
inspection of Figures 2 and 4 shows that the lat-
ter distribution has a considerably �fatter� tail.

The example also shows that the effect of 
dependence between processes on risk measures, 
such as Value-at-Risk (VaR), may be consider-
able even when the correlation between events 
is relatively low.

Parameter estimation

As with any model designed for practical appli-
cations, the value of the model is influenced sig-
nificantly by one�s ability to calibrate and 
implement it as well as its ability to represent 
reality. In this case, the model is easily imple-
mented, once the parameters are known, and it 
is possible to estimate the parameters using com-
mon methods.

λ9 0.1=
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        Figure 3: Dependent loss processes; loss processes specific to a risk class 
              follow a Poisson distribution with intensity . The firm-wide 
                   loss process follows a Poisson process with intensity 

λ 0.4=

λ 0.1=
In this section, the calibration method is dis-
cussed and illustrated by using the Monte-Carlo 
simulation results for the two models considered 
previously.

It is well known that the maximum likelihood 
estimate for the intensity of a Poisson process is 
the sample mean of the observed values. Ideally, 
one would like to use the maximum likelihood 
method to obtain estimates for the parameters in 
the multivariate processes. However, the expres-
sions for the likelihood function are not always 
that easily derived, and the resulting expressions 
may be difficult to use in practice.

The approach used here is to utilize the maxi-
mum likelihood estimates for the intensities 
of the observed processes, and then incorporate 
these estimates into an optimization problem.

Let be the sample mean for the events of the 
j-th observed process, and thus the maximum 
likelihood estimate for the intensity . For ease 
of exposition, assume, for the time being, that 
the system

 (6)

is solvable. Note that this approach ensures that 
the observed intensities are matched. 

Given the above system of equations, one now 
wants to determine the parameter set that most 
closely matches the higher moments, as cap-
tured by the covariance matrix. This is done by 
formulating it as an optimization problem over a 
distance function

 (7)

If the Frobenius norm is chosen as the distance 
norm�the sum of squared distances of the 
matrix elements�a routine quadratic optimiza-
tion problem is obtained, which is readily solved 
by standard optimization software. 

Illustrative applications

Now the calibration method is applied to the 
models discussed previously.

Two processes

For the structure given in Equations 1 and 2, the 
incidence matrix is given by 

µ� j

µj

∆λ µ� ,=

λ 0≥

min      C� ∆Λ∆T
–

s.t.     ∆λ µ� ,=

λ 0.≥
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Dependent Events
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            Figure 4: Empirical distribution of company-wide losses under the dependent model, 
              using a Monte-Carlo simulation with 10,000 scenarios; the 99% quantile is $59.19M
 (8)

and the covariance matrix by

 (9)

The optimization problem becomes:

Because of the equality constraints, this particu-
lar instance is an optimization problem over  
only, and is readily solved.

Independent example

In the independent model, shown in Figure 1, 
the incidence matrix is the identity matrix, and 
the solution to the optimization problem is given 
by the sample means of the observed events.

Dependent example

In the dependent model, shown in Figure 3, the 
incidence matrix is given by

 (10)

and the covariance matrix by

where E is a matrix consisting of all ones.

The optimization problem becomes:

∆ 1 0 1

0 1 1
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C
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As before, by virtue of the equality constraints, 
this is an optimization problem over  only, and 
is readily solved numerically.

Numerical examples

To illustrate the optimization approach, 50 sce-
narios were taken that were generated under the 
�dependent event� model given in Figure 3. The 
sample covariance matrix was computed, and 
the optimization performed to determine esti-
mates for the intensities. This resulted in

The procedure was repeated with 50 scenarios 
generated under the �independent event� model 
given in Figure 1, and the following result was 
obtained:

Note that, even though the dependent model 
was applied to scenarios generated from the 
independent model, the correct conclusion that 
there is no common cause of event is obtained. 

Conclusions

Correlations have a significant impact on capital 
calculations. In order to ensure that risk-sensi-
tive capital allocations are fair to all businesses, 
special models are required. One must be able to 
calculate correlations accurately and defensibly, 
and to use this information in determining and 
allocating capital. This paper presents a simple 
and easily calibrated model for including posi-
tive correlations. It demonstrates, by means of 
an example, the significant influence that posi-
tive correlations can have on required capital. 
Models such as these, which allow intuitive rela-
tionships to be modelled to provide more risk- 
sensitive capital allocation, need to be examined 
in greater detail if the quantitative measures of 
operational capital are to achieve credibility 
within the industry.
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Endnotes

1. The feasibility of the system of equations in 
Equation 6 can be verified by an application of 
Farkas� lemma. In the case that this system does 
not have a solution, we can incorporate the first 
constraint in the objective function, using 
Lagrangian multipliers or a penalty method. 
These modifications also result in a quadratic 
optimization problem.

2. The optimization formulation easily allows 
one to incorporate preferences regarding the rel-
ative importance of elements of the sample 
covariance matrix by introducing weights into 
the elements of the objective function. Further, 
the optimization formulation allows one to 
examine the effect of different configurations of 
the underlying processes by taking different inci-
dence matrices. This is a feature that a maxi-
mum likelihood method does not have.

3. To be able to use the model, one has to specify 
the number, m, of underlying processes, and 
decide how the underlying processes influence 

λ9

λ1 … λ9, ,( ) 0.38( 0.48 0.40 0.56, , , ,=

0.44 0.38 0.26 0.38 0.12 )., , , ,

λ1 … λ9, ,( ) 0.32( 0.32 0.42 0.58, , , ,=

0.50 0.50 0.44 0.52 0.00 )., , , ,
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the observed processes. Although potentially 
there are m  possible ways of doing this, one 
needs to exercise caution. The paucity of data in 
the setting of operational risk does not allow for 
the estimation of too many parameters, and, 

hence, there is the need to trim down the model. 
In most cases, the business analysis will help to 
determine the number of underlying processes 
and which processes they influence.

2
n
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